CONSTRUCTION OF MODULES WITH A PRESCRIBED DIRECT SUM DECOMPOSITION

被引:1
作者
Herbera, Dolors [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Bellaterra, Barcelona, Spain
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2014年 / 15卷
关键词
AB5*-module; artinian module; semilocal ring; couniform module; category equivalence; monoid; direct-sum; pullback; pushout;
D O I
10.24330/ieja.266249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some criteria for recognizing local rings that allow us to show that indecomposable AB5* modules over commutative rings and couniform modules over noetherian commutative rings have a local endomorphism ring. We also develop some theory on methods to construct modules with a prescribed direct-sum decomposition. As an application we realize an interesting class of commutative monoids as monoids of direct summands of a direct sum of a countable number of copies of a suitable artinian cyclic module, showing that there may appear a rich supply of direct summands that are not a direct sum of artinian modules. An important gadget for proving our realization result is a variation of a method for realizing a given ring as the endomorphism ring of a cyclic (artinian) module due to Armendariz, Fisher and Snider.
引用
收藏
页码:218 / 248
页数:31
相关论文
共 33 条
[1]   INJECTIVE AND SUBJECTIVE ENDOMORPHISMS OF FINITELY GENERATED MODULES [J].
ARMENDARIZ, EP ;
FISHER, JW ;
SNIDER, RL .
COMMUNICATIONS IN ALGEBRA, 1978, 6 (07) :659-672
[2]   POWER CANCELLATION FOR ARTINIAN-MODULES [J].
CAMPS, R ;
MENAL, P .
COMMUNICATIONS IN ALGEBRA, 1991, 19 (07) :2081-2095
[3]   ON SEMILOCAL RINGS [J].
CAMPS, R ;
DICKS, W .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (1-2) :203-211
[4]   THE PRUFER-RINGS THAT ARE ENDOMORPHISM-RINGS OF ARTINIAN-MODULES [J].
CAMPS, R ;
FACCHINI, A .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (08) :3133-3157
[5]   HEREDITARY NOETHERIAN PRIME RINGS [J].
EISENBUD, D ;
ROBSON, JC .
JOURNAL OF ALGEBRA, 1970, 16 (01) :86-&
[6]  
FACCHINI A, 1985, J LOND MATH SOC, V31, P425
[7]   Krull-Schmidt fails for artinian modules [J].
Facchini, A ;
Herbera, D ;
Levy, LS ;
Vamos, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (12) :3587-3592
[8]   K0 of a semilocal ring [J].
Facchini, A ;
Herbera, D .
JOURNAL OF ALGEBRA, 2000, 225 (01) :47-69
[9]  
FACCHINI A, 1998, PROGR MATH, V167
[10]   Endomorphism rings and tensor products of linearly compact modules [J].
Faith, C ;
Herbera, D .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (04) :1215-1255