TRIANGULAR TRUNCATION AND FINDING THE NORM OF A HADAMARD MULTIPLIER

被引:29
作者
ANGELOS, JR [1 ]
COWEN, CC [1 ]
NARAYAN, SK [1 ]
机构
[1] PURDUE UNIV,DEPT MATH,W LAFAYETTE,IN 47907
基金
美国国家科学基金会;
关键词
D O I
10.1016/0024-3795(92)90414-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For B a fixed matrix, we study the problem of using a criterion of Haagerup to find the norm of the map A --> A . B, where . is the Hadamard or entrywise product of matrices. The techniques developed are applied to triangular truncation, and it is proved that if K(n) is the norm of triangular truncation of n X n matrices, then K(n) /log n --> pi--1.
引用
收藏
页码:117 / 135
页数:19
相关论文
共 14 条
[1]   INDUCED NORMS OF THE SCHUR MULTIPLIER OPERATOR [J].
ANDO, T ;
OKUBO, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 147 :181-199
[2]  
Ando T., 1987, LINEAR MULTILINEAR A, V21, P345, DOI DOI 10.1080/03081088708817810.107
[3]  
Davidson K. R., 1988, PITMAN RES NOTES MAT, V191
[4]  
Douglas R.G., 1998, GRADUATE TEXTS MATH, V179
[6]  
HAAGERUP U, DECOMPOSITIONS COMPL
[7]  
Halmos P.R., 1982, HILBERT SPACE PROBLE, V2nd, DOI DOI 10.1007/978-1-4684-9330-6
[8]   ON PERHERMITIAN MATRICES [J].
HILL, RD ;
BATES, RG ;
WATERS, SR .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :173-179
[9]  
Horn R. A., 1990, PROC S APPL MATH, V40, P87, DOI [DOI 10.1090/PSAPM/040/1059485, 10.1090/psapm/040/1059485]
[10]  
Horn R.A, 2012, MATRIX ANAL, V2nd ed.