CHARGE TRANSPORT IN SEMICONDUCTORS WITH DEGENERACY EFFECTS

被引:23
作者
POUPAUD, F [1 ]
SCHMEISER, C [1 ]
机构
[1] VIENNA TECH UNIV,INST ANGEW & NUMER,A-1040 VIENNA,AUSTRIA
关键词
D O I
10.1002/mma.1670140503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It has been a common procedure to derive a model for charge transport in degenerate semiconductor material by incorporating a Fermi-Dirac distribution into the classical drift-diffusion model. In this work a Boltzmann equation with a non-linear collision term is considered. A new fluid dynamical model is derived by considering small perturbations of the thermal equilibrium. The analysis contains an existence and uniqueness proof for the Boltzmann equation, a justification of the perturbation argument and a study of initial boundary value problems for the new fluid dynamical model.
引用
收藏
页码:301 / 318
页数:18
相关论文
共 16 条
[1]  
BARDOS C, 1985, ANN I H POINCARE-AN, V2, P101
[2]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[3]  
BLAKEMORE JS, 1962, SEMICONDUCTOR STATIS
[4]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[5]  
GOLSE F, 1988, 5 P BAIL C DUBL
[6]   The rationale behind kinetic gas theory [J].
Hilbert, D .
MATHEMATISCHE ANNALEN, 1912, 72 :562-577
[7]  
Ladyzhenskaya O A, 1968, LINEAR QUASILINEAR E
[8]  
Ladyzhenskaya O.A., 1968, LINEAR QUASILINEAR E, V23
[9]   ASYMPTOTIC SOLUTION OF NEUTRON-TRANSPORT PROBLEMS FOR SMALL MEAN FREE PATHS [J].
LARSEN, EW ;
KELLER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) :75-81
[10]  
Markowich P., 1990, SEMICONDUCTOR EQUATI, DOI DOI 10.1007/978-3-7091-6961-20765.35001