Cone D-Metric Spaces and Some Fixed Point Theorems

被引:0
作者
Nezhad, Zahir Mazlumi [1 ,2 ]
Lakzian, Hossein [3 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran 14778, Iran
[2] Islamic Azad Univ, Dept Math, Neyshabur Branch, Neyshabur, Iran
[3] Payame Noor Univ, Dept Math, Tehran 193954697, Iran
来源
THAI JOURNAL OF MATHEMATICS | 2012年 / 10卷 / 02期
关键词
Cone D-metric; Fixed point theorem; D-metric; D-quasi contraction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
this paper, we introduce and study the concept of cone D-metric spaces, in which the cone does not need to be normal. Using this new notion we prove several fixed point theorems, which are generalizations of fixed point theorems by Ume [J.S. Ume, Remarks on nonconvex minimization theorems and fixed point theorems in complete D-metric spaces, Indian J. Pure Appl. Math. 32 (1) (2001) 25-36], Rhoades [B.E. Rhoades, A fixed point theorem for generalized metric spaces, Pacific J. Math. 10 (1960) 637-675] and Dhage [B.C. Dhage, Generalized metric spaces and mapping with fixed point, Bull. Calcutta Math. Soc. 84 (1992) 329-336].
引用
收藏
页码:259 / 273
页数:15
相关论文
共 37 条
[1]   Common fixed point results for noncommuting mappings without continuity in cone metric spaces [J].
Abbas, A. ;
Jungck, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (01) :416-420
[2]   Some Common Fixed Point Results in Cone Metric Spaces [J].
Arshad, Muhammad ;
Azam, Akbar ;
Vetro, Pasquale .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[3]  
Azam A, 2009, B IRAN MATH SOC, V35, P255
[4]   Fixed point theorems for w-cone distance contraction mappings in tvs-cone metric spaces [J].
Ciric, Ljubomir ;
Lakzian, Hossein ;
Rakocevic, Vladimir .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[5]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[6]  
Dhage B. C., 1992, B CALCUTTA MATH SOC, V84, P329
[7]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261
[8]   2-BANACH SPACES [J].
GAHLER, S .
MATHEMATISCHE NACHRICHTEN, 1969, 42 (4-6) :335-&
[9]  
Gahler S, 1964, MATH NACHR, V28, P1, DOI 10.1002/mana.19640280102
[10]  
Gahler S., 1963, MATHE MATISCHE NACHR, V26, P115, DOI [DOI 10.1002/MANA.19630260109, 10.1002/mana.19630260109]