Regular handicap graphs of order n equivalent to 0 (mod 8)

被引:5
作者
Froncek, Dalibor [1 ]
Shepanik, Aaron [1 ]
机构
[1] Univ Minnesota Duluth, Dept Math & Stat, Duluth, MN 55812 USA
关键词
graph labeling; handicap labeling; regular graphs; tournament scheduling;
D O I
10.5614/ejgta.2018.6.2.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A handicap distance antimagic labeling of a graph G = (V, E) with n vertices is a bijection (f) over cap : V -> {1; 2, . . . , n} with the property that (f) over cap (x(i)) = i, the weight w(x(i)) is the sum of labels of all neighbors of x(i), and the sequence of the weights w(x(1)), w(x(2)), . . . ,w(x(n)) forms an increasing arithmetic progression. A graph G is a handicap distance antimagic graph if it allows a handicap distance antimagic labeling. We construct r - regular handicap distance antimagic graphs of order n equivalent to 0 (mod 8) for all feasible values of r.
引用
收藏
页码:208 / 218
页数:11
相关论文
共 14 条
[1]  
Arumugam S, 2011, J INDONES MATH SOC, P11
[2]  
Freyberg B., 2017, THESIS
[3]  
Froncek D., J COMBIN MATH COMBIN
[4]  
Froncek D., 2006, B I COMBIN APPL, V48, P31
[5]  
Froncek D., 2007, C NUMER, V187, P83
[6]  
Froncek D, 2017, OPUSC MATH, V37, P557, DOI 10.7494/OpMath.2017.37.4.557
[7]  
Froncek D, 2013, AKCE INT J GRAPHS CO, V10, P119
[8]  
Gallian J., 2017, ELECT J COMBIN
[9]   THE CHROMATIC INDEX OF COMPLETE MULTIPARTITE GRAPHS [J].
HOFFMAN, DG ;
RODGER, CA .
JOURNAL OF GRAPH THEORY, 1992, 16 (02) :159-163
[10]  
Kovarov T., 2017, ELECT NOTES DISCRETE, V60, P69