Existence and Asymptotic Behavior of Boundary Blow-Up Weak Solutions for Problems Involving the p-Laplacian

被引:0
作者
Belhaj Rhouma, Nedra [1 ]
Drissi, Amor [1 ]
Sayeb, Wahid [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Campus Univ, Tunis 2092, Tunisia
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2013年 / 26卷 / 02期
关键词
p-Laplacian operator; sub and supersolution; blow-up solutions; comparison principle;
D O I
10.4208/jpde.v26.n2.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D subset of R-N (N >= 3), be a smooth bounded domain with smooth boundary partial derivative D. In this paper, the existence of boundary blow-upweak solutions for the quasilinear elliptic equation Delta(p)u = lambda k(x) f(u) in D(lambda>0 and 1<p<N), is obtained under new conditions on k. We give also asymptotic behavior near the boundary of such solutions.
引用
收藏
页码:172 / 192
页数:21
相关论文
共 28 条
[1]  
AMZOIU M, 2010, S UN OV CONST, V18, P35
[2]  
Baalal A, 2002, ELECT J DIFFERENTIAL, V2002, P1
[3]  
Baalal A., 2002, ELECTRON J DIFFER EQ, V2002, P1
[4]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[5]  
Belhaj Rhouma N., EXISTENCE B IN PRESS
[6]  
Bieberbach L., 1975, MATH ANNL, V77, P173
[7]   Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights [J].
Chuaqui, M ;
Cortazar, C ;
Elgueta, M ;
Garcia-Melian, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (04) :653-662
[8]  
Cirstea FC, 2006, ASYMPTOTIC ANAL, V46, P275
[9]   General uniqueness results and variation speed for blow-up solutions of elliptic equations [J].
Cîrstea, FC ;
Du, YH .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :459-482
[10]   Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) :447-452