Various borates, vanadates, niobates, antimonates, titanates, zirconates and CaS doped with Dy3+ were prepared. Factors which have an effect on the yellow-to-blue intensity ratio (Y/B) of Dy3+ emission are reported. Y/B increases with decreasing Z/r or electronegativity of the next-neighbour element M in the complex oxides Dy-O-M. The greater the degree of covalency between Dy3+ and O2-, the greater Y/B is. When Dy3+ is located at a site with an inverse centre and high symmetry, Dy3+ displays no luminescence. It seems that Y/B of Dy3+ located at a site deviated from an inverse centre is greater than that of Dy3+ located at a site without an inverse centre. Y/B does not vary much with the variation in concentration of Dy3+ when Dy3+ is substituted for an element with the same valency, but it does depend on the concentration of Dy3+ when Dy3+ is substituted for an element with a different valency in the matrix, because defects are formed in this case.