On strongly regular graphs with eigenvalue mu and their extensions

被引:0
作者
Makhnev, A. A. [1 ,2 ]
Paduchikh, D. V. [3 ,4 ]
机构
[1] Ural Fed Univ, Russian Acad Sci, Inst Math & Mech, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Russian Acad Sci, Inst Math & Mech, Ural Branch,Physicomath Sci, Ekaterinburg, Russia
[3] Russian Acad Sci, Inst Math & Mech, Ural Branch, Moscow, Russia
[4] Russian Acad Sci, Inst Math & Mech, Ural Branch, Physicomath Sci, Moscow, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2013年 / 19卷 / 03期
关键词
strongly regular graph; AT4-graph; locally M-graph;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be a class of strongly regular graphs for which mu is a non-principal eigenvalue. Note that the neighborhood of any vertex of an AT4 graph lies in M. We describe parameters of graphs from M and find intersection arrays of AT4 graphs in which neighborhoods of vertices lie in chosen subclasses from M. In particular, an AT4 graph in which the neighborhoods of vertices do not contain triangles is the Conway-Smith graph with parameters (p, q, r) = ( 1, 2, 3) or the first Soicher graph with parameters (p, q, r) = (2, 4, 3).
引用
收藏
页码:207 / 214
页数:8
相关论文
共 5 条
[1]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[2]  
Cameron P. J., 1991, LONDON MATH SOC STUD, V22
[3]   AT4 family and 2-homogeneous graphs [J].
Jurisic, A .
DISCRETE MATHEMATICS, 2003, 264 (1-3) :127-148
[4]   Krein parameters and antipodal tight graphs with diameter 3 and 4 [J].
Jurisic, A ;
Koolen, J .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :181-202
[5]   Classification of the family AT4(qs, q, q) of antipodal tight graphs [J].
Jurisic, Aleksandar ;
Koolen, Jack .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :842-852