ON ORDINARY RIDGE-REGRESSION IN GENERALIZED LINEAR-MODELS

被引:110
作者
SEGERSTEDT, B [1 ]
机构
[1] UNIV UMEA,DEPT STAT,S-90186 UMEA,SWEDEN
基金
瑞典研究理事会;
关键词
BOOTSTRAPPING; GENERALIZED LINEAR MODELS; MEAN SQUARE ERROR; RIDGE REGRESSION;
D O I
10.1080/03610929208830909
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper it is shown that an ill-conditioned data matrix has similar effects on the parameter estimator when estimating generalized linear models as when estimating linear regression models. Asymptotically, the average length of the maximum likelihood estimator of a parameter vector increases as the conditioning of the covariance matrix deteriorates. A generalization of the ridge regression is suggested for maximum likelihood estimation in generalized linear models. In particular the existence of a ridge coefficient, k, such that the asymptotic mean square error of the generalized linear model ridge estimator is smaller than the asymptotic variance of the maximum likelihood estimator is shown. A numerical example illustrates the theoretical results.
引用
收藏
页码:2227 / 2246
页数:20
相关论文
共 50 条
[21]   A MODIFIED AKAIKE CRITERION FOR MODEL CHOICE IN GENERALIZED LINEAR-MODELS [J].
BONNEU, M ;
MILHAUD, X .
STATISTICS, 1994, 25 (03) :225-238
[22]   Inference in regression models of heavily skewed alcohol use data: A comparison of ordinary least squares, generalized linear models, and bootstrap resampling [J].
Neal, Dan J. ;
Simons, Jeffrey S. .
PSYCHOLOGY OF ADDICTIVE BEHAVIORS, 2007, 21 (04) :441-452
[23]   POWER CALCULATIONS FOR LIKELIHOOD RATIO TESTS IN GENERALIZED LINEAR-MODELS [J].
SELF, SG ;
MAURITSEN, RH ;
OHARA, J .
BIOMETRICS, 1992, 48 (01) :31-39
[24]   ESTIMATING AND TESTING GENERALIZED LINEAR-MODELS UNDER INEQUALITY RESTRICTIONS [J].
FAHRMEIR, L ;
KLINGER, J .
STATISTICAL PAPERS, 1994, 35 (03) :211-229
[25]   A Generalized Diagonal Ridge-type Estimator in Linear Regression [J].
Liang, Fei-Bao ;
Lan, Yi-Xin .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (06) :1145-1163
[26]   Cross validation of ridge regression estimator in autocorrelated linear regression models [J].
Acar, T. Sokut ;
Ozkale, M. R. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (12) :2429-2440
[27]   THE OPTIMALITY OF ITERATIVE MAXIMUM PENALIZED LIKELIHOOD ALGORITHMS FOR RIDGE-REGRESSION [J].
YU, SH .
APPLIED MATHEMATICS LETTERS, 1994, 7 (04) :35-39
[28]   A general adaptive ridge regression method for generalized linear models: an iterative re-weighting approach [J].
Guo, Zijun ;
Chen, Mengxing ;
Fan, Yali ;
Song, Yan .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (18) :6420-6443
[29]   CORRECTION FOR COVARIATE MEASUREMENT ERROR IN GENERALIZED LINEAR-MODELS - A BOOTSTRAP APPROACH [J].
HAUKKA, JK .
BIOMETRICS, 1995, 51 (03) :1127-1132
[30]   RIDGE-REGRESSION ESTIMATOR COMPARISONS USING PITMANS MEASURE OF CLOSENESS [J].
MASON, RL ;
BLAYLOCK, NW .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (11) :3629-3641