ON ORDINARY RIDGE-REGRESSION IN GENERALIZED LINEAR-MODELS

被引:110
作者
SEGERSTEDT, B [1 ]
机构
[1] UNIV UMEA,DEPT STAT,S-90186 UMEA,SWEDEN
基金
瑞典研究理事会;
关键词
BOOTSTRAPPING; GENERALIZED LINEAR MODELS; MEAN SQUARE ERROR; RIDGE REGRESSION;
D O I
10.1080/03610929208830909
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper it is shown that an ill-conditioned data matrix has similar effects on the parameter estimator when estimating generalized linear models as when estimating linear regression models. Asymptotically, the average length of the maximum likelihood estimator of a parameter vector increases as the conditioning of the covariance matrix deteriorates. A generalization of the ridge regression is suggested for maximum likelihood estimation in generalized linear models. In particular the existence of a ridge coefficient, k, such that the asymptotic mean square error of the generalized linear model ridge estimator is smaller than the asymptotic variance of the maximum likelihood estimator is shown. A numerical example illustrates the theoretical results.
引用
收藏
页码:2227 / 2246
页数:20
相关论文
共 50 条
[11]   IMPROVED SCORE TESTS FOR GENERALIZED LINEAR-MODELS [J].
CORDEIRO, GM ;
FERRARI, SLD ;
PAULA, GA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1993, 55 (03) :661-674
[12]   RIDGE-REGRESSION - DEGREES OF FREEDOM IN THE ANALYSIS OF VARIANCE [J].
HOERL, AE ;
KENNARD, RW .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (04) :1485-1495
[13]   The stochastic restricted ridge estimator in generalized linear models [J].
M. Revan Özkale ;
Hans Nyquist .
Statistical Papers, 2021, 62 :1421-1460
[14]   The stochastic restricted ridge estimator in generalized linear models [J].
Ozkale, M. Revan ;
Nyquist, Hans .
STATISTICAL PAPERS, 2021, 62 (03) :1421-1460
[15]   BIVARIATE B-SPLINES IN GENERALIZED LINEAR-MODELS [J].
KOO, JY ;
LEE, YJ .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1994, 50 (1-2) :119-129
[16]   g.ridge: An R Package for Generalized Ridge Regression for Sparse and High-Dimensional Linear Models [J].
Emura, Takeshi ;
Matsumoto, Koutarou ;
Uozumi, Ryuji ;
Michimae, Hirofumi .
SYMMETRY-BASEL, 2024, 16 (02)
[17]   Shrinkage ridge regression in partial linear models [J].
Roozbeh, Mahdi ;
Arashi, Mohammad .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (20) :6022-6044
[18]   PERFORMANCE OF SOME NEW PRELIMINARY TEST RIDGE-REGRESSION ESTIMATORS AND THEIR PROPERTIES [J].
SALEH, AKME ;
KIBRIA, BMG .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (10) :2747-2764
[19]   AN EFFECTIVE RIDGE-REGRESSION PROCEDURE FOR RESISTIVITY DATA INVERSION [J].
MEJU, MA .
COMPUTERS & GEOSCIENCES, 1992, 18 (2-3) :99-118
[20]   Comparing ordinary ridge and generalized ridge regression results obtained using genetic algorithms for ridge parameter selection [J].
Ndabashinze, Barnabe ;
Siray, Gulesen Ustundag .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6159-6169