On the Fermi-Walker Derivative for Inextensible Flows of Normal Spherical Image

被引:6
作者
Korpinar, Talat [1 ]
机构
[1] Mus Alparslan Univ, Dept Math, TR-49250 Mus, Turkey
关键词
Flows; Fermi Walker Derivative; Normal Spherical Image;
D O I
10.1166/jap.2018.1428
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article, we derive a new formulas on normal spherical image via Fermi-Walker parallelism and derivative in sphere. With this new description, we arise necessary and sufficient conditions of this particle to be the inextensible flow. Furthermore, we obtain new application to electric and magnetic field in Lorentz equation.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 27 条
[1]   Construction of Inextensible Flows of Dual Normal Surfaces in the Dual Space D-3 [J].
Asil, Vedat ;
Korpinar, Talat .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2013, 31 (02) :31-37
[2]   Frenet-Serret formalism for null world lines [J].
Bini, D ;
Geralico, A ;
Jantzen, RT .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (11) :3963-3981
[3]   Intrinsic geometry of curves and the Lorentz equation [J].
Caltenco, JH ;
Linares, R ;
López-Bonilla, JL .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (07) :839-842
[4]   Hamiltonians for curves [J].
Capovilla, R ;
Chryssomalakos, C ;
Guven, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31) :6571-6587
[5]  
Einstein A, 2005, RELATIVITY SPECIAL G
[6]  
Fermi E., 1922, ATTI ACCAD NAZ LIN, V31, P306
[7]  
Gray A., 1998, MODERN DIFFERENTIAL, V36, P121
[8]   MOTION OF CHARGED-PARTICLES IN HOMOGENEOUS ELECTROMAGNETIC-FIELDS [J].
HONIG, E ;
SCHUCKING, EL ;
VISHVESHWARA, CV .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (06) :774-781
[9]  
Korpinar T, 2012, IRAN J SCI TECHNOL A, V35, P265
[10]  
Korpinar T., 2013, IRANIAN J SCI TECHNO, V37, P1