A generalization of Shannon function

被引:1
作者
Redkin, Nikolay P. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow, Russia
关键词
Boolean function; Boolean circuit; complexity of a Boolean function; Shannon function;
D O I
10.1515/dma-2018-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When investigating the complexity of implementing Boolean functions, it is usually assumed that the basis in which the schemes are constructed and the measure of the complexity of the schemes are known. For them, the Shannon function is introduced, which associates with each Boolean function the least complexity of implementing this function in the considered basis. In this paper we propose a generalization of such a Shannon function in the form of an upper bound that is taken over all functionally complete bases. This generalization gives an idea of the complexity of implementing Boolean functions in the "worst" bases for them. The conceptual content of the proposed generalization is demonstrated by the example of a conjunction.
引用
收藏
页码:309 / 318
页数:10
相关论文
共 11 条
[1]  
Gorelik E. S., 1973, Problemy Kibernetiki, P27
[2]  
Kochergina G. A., 2002, MATEMATICHESKIE VOPR, V11, P219
[3]  
Lupanov O. B., 1958, IZV VYSSH UCHEBN ZAV, V1, P120
[4]  
Lupanov O.B., 1984, ASYMPTOTIC ESTIMATES
[5]  
Nechiporuk E.I., 1962, PROBLEMY KIBERNETIKI, V8, P123
[6]  
Novikov S. V., 1975, VESTNIK BELORUSS GOS, V1, P13
[7]  
Red'kin N.P., 1989, MATH PROBLEMS CYBERN, V2, P198
[8]  
Red'kin N.P., 2009, DISCRETE MATH
[9]  
Red'kin N.P., 1970, PROBL KIBERN, V23, P83
[10]  
Soprunenko E. P., 1965, PROBL KIBERN, P117