THE FISHER-HARTWIG CONJECTURE AND GENERALIZATIONS

被引:78
作者
BASOR, EL
TRACY, CA
机构
[1] UNIV CALIF DAVIS, DEPT MATH, DAVIS, CA 95616 USA
[2] UNIV CALIF DAVIS, INST THEORET DYNAM, DAVIS, CA 95616 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4371(91)90149-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the status of the Fisher-Hartwig conjecture concerning the asymptotic expansion of a class of Toeplitz determinants with singular generating functions. A counterexample is given for a nonrational generating function; and we formulate a generalized Fisher-Hartwig conjecture.
引用
收藏
页码:167 / 173
页数:7
相关论文
共 44 条
[1]  
[Anonymous], 2013, 2 DIMENSIONAL ISING
[2]  
AUYANG H, 1984, PHYS LETT A, V104, P131, DOI 10.1016/0375-9601(84)90359-1
[3]  
Barnes E W., 1900, Q JOURN PURE APPL MA, V31, P264
[5]  
BASOR E, 1979, INDIANA U MATH J, V28, P675
[6]  
Basor E., 1980, J OPERAT THEOR, V3, P23
[7]   THE ASYMPTOTIC-BEHAVIOR OF TOEPLITZ DETERMINANTS FOR GENERATING-FUNCTIONS WITH ZEROS OF INTEGRAL ORDERS [J].
BOTTCHER, A ;
SILBERMANN, B .
MATHEMATISCHE NACHRICHTEN, 1981, 102 :79-105
[8]   TOEPLITZ MATRICES AND DETERMINANTS WITH FISHER-HARTWIG SYMBOLS [J].
BOTTCHER, A ;
SILBERMANN, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (02) :178-214
[9]   TOEPLITZ-OPERATORS AND DETERMINANTS GENERATED BY SYMBOLS WITH ONE FISHER-HARTWIG SINGULARITY [J].
BOTTCHER, A ;
SILBERMANN, B .
MATHEMATISCHE NACHRICHTEN, 1986, 127 :95-124
[10]  
Bottcher A, 1982, Z ANAL ANWEND, V1, P23