ON MINIMA OF RADIALLY SYMMETRICAL FUNCTIONALS OF THE GRADIENT

被引:31
作者
CELLINA, A
PERROTTA, S
机构
[1] S.I.S.S.A., 34014 Trieste
关键词
EXISTENCE; UNIQUENESS AND THE QUALITATIVE PROPERTIES; RADIALLY SYMMETRICAL FUNCTIONALS;
D O I
10.1016/0362-546X(94)90045-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:239 / 249
页数:11
相关论文
共 14 条
[1]   A NONCONVEX VARIATIONAL PROBLEM RELATED TO CHANGE OF PHASE [J].
BAUMAN, P ;
PHILLIPS, D .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (02) :113-138
[2]   RADIALLY SYMMETRICAL SOLUTIONS OF A CLASS OF PROBLEMS OF THE CALCULUS OF VARIATIONS WITHOUT CONVEXITY ASSUMPTIONS [J].
CELLINA, A ;
FLORES-BAZAN, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (04) :465-477
[3]  
Ekeland I., 1976, CONVEX ANAL VARIATIO
[4]  
FLORES F, IN PRESS J OPTIM THE
[5]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[6]   NUMERICAL STUDY OF A RELAXED VARIATIONAL PROBLEM FROM OPTIMAL-DESIGN [J].
GOODMAN, J ;
KOHN, RV ;
REYNA, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 57 (01) :107-127
[7]  
KAWOHL B, 1990, INT SERIES NUMERICAL, V95
[8]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .1. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (01) :113-137
[9]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .2. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (02) :139-182
[10]   OPTIMAL-DESIGN AND RELAXATION OF VARIATIONAL-PROBLEMS .3. [J].
KOHN, RV ;
STRANG, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (03) :353-377