CONVERGENCE ANALYSIS OF CANONICAL GENETIC ALGORITHMS

被引:929
|
作者
RUDOLPH, G
机构
[1] Department of Computer Science, LS XI, University of Dortmund, Dortmund
来源
关键词
Canonical genetic algorithm - Convergence analysis - Crossover reproduction - Finite Markov chain analysis - Global optimum - Mutation - Proportional reproduction - Schema theorem;
D O I
10.1109/72.265964
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper analyzes the convergence properties of the canonical genetic algorithm (CGA) with mutation, crossover and proportional reproduction applied to static optimization problems. It is proved by means of homogeneous finite Markov chain analysis that a CGA will never converge to the global optimum regardless of the initialization, crossover, operator and objective function. But variants of CGA's that always maintain the best solution in the population, either before or after selection, are shown to converge to the global optimum due to the irreducibility property of the underlying original nonconvergent CGA. These results are discussed with respect to the schema theorem.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [31] Convergence analysis of the boundary geometry identification obtained by genetic algorithms in the PIES
    Zieniuk, Eugeniusz
    Szerszen, Krzysztof
    Boltuc, Agnieszka
    BIOMETRICS, COMPUTER SECURITY SYSTEMS AND ARTIFICIAL INTELLIGENCE APPLICATIONS, 2006, : 333 - 340
  • [32] Analysis of genetic algorithms convergence applied to mensuration problems in computer vision
    Olague, G
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 1792 - 1792
  • [33] Convergence Analysis of Hidden Genes Genetic Algorithms in Space Trajectory Optimization
    Darani, Shadi A.
    Abdelkhalik, Ossama
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2018, 15 (04): : 228 - 238
  • [34] ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING - ANALYSIS AND EXPERIMENTS
    FOGEL, DB
    CYBERNETICS AND SYSTEMS, 1994, 25 (03) : 389 - 407
  • [35] USING RELIABILITY-ANALYSIS TO ESTIMATE THE NUMBER OF GENERATIONS TO CONVERGENCE IN GENETIC ALGORITHMS
    CHAKRABORTY, UK
    DASTIDAR, DG
    INFORMATION PROCESSING LETTERS, 1993, 46 (04) : 199 - 209
  • [36] Range juggling for better convergence in Genetic Range Genetic Algorithms
    Arakawa, Masao
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 1359 - 1365
  • [37] On the convergence of multi-parent genetic algorithms
    Ting, CK
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 396 - 403
  • [38] A convergence model for asynchronous parallel genetic algorithms
    Berntsson, J
    Tang, ML
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2627 - 2634
  • [39] Techniques for bounding the convergence rate of genetic algorithms
    Rabinovich, Y
    Wigderson, A
    RANDOM STRUCTURES & ALGORITHMS, 1999, 14 (02) : 111 - 138
  • [40] The convergence of genetic algorithms in GSM network optimization
    Závodny, L
    Hanus, S
    ICECOM 2003, CONFERENCE PROCEEDINGS, 2003, : 91 - 94