It seems mole and more likely that one will have to abandon the paradigm of smooth outflows from (hot) stars in favour of a clumpy structure, possibly in a fractallike hierarchy on all scales. Observationally, this is best established for Wolf-Rayet star winds (e.g. scaling laws, mass-spectrum, anisotropy,...), for which the consequences of clumping are discussed. These include four broad categories, which are outlined in this review: (a) an ideal laboratory for studying time-dependent astrophysical turbulence, (b) potential tracers of hot-wind global structure parameters, (c) reduced mass-loss rates, and (d) impact on massive binary studies.