A NONPARAMETRIC MEASURE OF INDEPENDENCE UNDER A HYPOTHESIS OF INDEPENDENT COMPONENTS

被引:17
作者
ROSENBLATT, M
WAHLEN, BE
机构
[1] UNIV CALIF SAN DIEGO,DEPT MATH,LA JOLLA,CA 92093
[2] USN,COMMAND,CTR CONTROL & OCEAN SURVEILLANCE,DIV RDT&E,SAN DIEGO,CA 92132
关键词
NONPARAMETRIC; TEST OF INDEPENDENCE; DENSITY FUNCTION ESTIMATE; KERNEL;
D O I
10.1016/0167-7152(92)90197-D
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Asymptotic normality is derived for a nonparametric measure of independence of the components of random two-vectors. This result is obtained without the restrictive assumptions previously made on the rate of convergence of the bandwidth sequence of the density estimates used.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 8 条
[1]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[2]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[4]  
MESSER K, IN PRESS ANN STATIST
[5]  
Muller HG, 1988, NONPARAMETRIC REGRES
[6]  
RICE J, 1984, COMMUN STAT-THEOR M, V13, P893
[7]   QUADRATIC MEASURE OF DEVIATION OF 2-DIMENSIONAL DENSITY ESTIMATES AND A TEST OF INDEPENDENCE [J].
ROSENBLATT, M .
ANNALS OF STATISTICS, 1975, 3 (01) :1-14
[8]  
WAHLEN BE, 1991, THESIS U CALIFORNIA