Existence of mild solutions to a Cauchy problem presented by fractional evolution equation with an integral initial condition

被引:0
作者
Akrami, Mohammad Hossein [1 ]
Erjaee, Gholam Hussain [2 ]
机构
[1] Yazd Univ, Dept Math, Yazd, Iran
[2] Shiraz Univ, Coll Sci, Dept Math, Shiraz 7481171466, Iran
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2016年 / 7卷 / 02期
关键词
fractional evolution equation; Cauchy problem; fixed point theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 25 条
[1]   EXAMPLES OF ANALYTICAL SOLUTIONS BY MEANS OF MITTAG-LEFFLER FUNCTION OF FRACTIONAL BLACK-SCHOLES OPTION PRICING EQUATION [J].
Akrami, Mohammad Hossein ;
Erjaee, Gholam Hussian .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :38-47
[2]  
Banas J., 1980, LECT NOTES PURE APPL
[3]   An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces [J].
Benchohra, Mouffak ;
Cabada, Alberto ;
Seba, Djamila .
BOUNDARY VALUE PROBLEMS, 2009,
[4]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[5]  
Byszewski L., 1993, ZESZ NAUK POL RZES M, V18, P109
[6]  
Byszewski L., 1991, APPL ANAL, V40, P11, DOI 10.1080/00036819008839989
[7]   On the initial value problem of fractional evolution equations with noncompact semigroup [J].
Chen, Pengyu ;
Li, Yongxiang ;
Chen, Qiyu ;
Feng, Binhua .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (05) :1108-1115
[8]   Existence and uniqueness of mild solution for an impulsive neutral fractional integro-differential equation with infinite delay [J].
Dabas, Jaydev ;
Chauhan, Archana .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (3-4) :754-763
[9]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[10]  
Fan Z., 2006, INT J NONLINEAR SCI, V2, P131