QUADRATIC APPROXIMATIONS IN CONVEX NONDIFFERENTIABLE OPTIMIZATION

被引:7
作者
GAUDIOSO, M
MONACO, MF
机构
[1] Univ della Calabria, Calabria
关键词
NONDIFFERENTIABLE OPTIMIZATION; BUNDLE METHODS;
D O I
10.1137/0329003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An implementable descent method for the unconstrained minimization of convex nonsmooth functions of several variables is described. The algorithm is characterized by the use of a set of quadratic approximations of the objective function in order to compute the search direction. The resulting direction finding subproblem is shown to be equivalent to a structural parametric quadratic programming problem. The convergence of the algorithm to the minimum is proved, and numerical experience is reported.
引用
收藏
页码:58 / 70
页数:13
相关论文
共 27 条
[1]  
AUSLENDER A, 1987, MATH PROGRAM STUD, V30, P102, DOI 10.1007/BFb0121157
[2]   EFFICIENT METHOD TO SOLVE MINIMAX PROBLEM DIRECTLY [J].
CHARALAMBOUS, C ;
CONN, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (01) :162-187
[3]  
Dem'yanov V. F., 1974, INTRO MINIMAX
[4]   A DESCENT ALGORITHM FOR NONSMOOTH CONVEX-OPTIMIZATION [J].
FUKUSHIMA, M .
MATHEMATICAL PROGRAMMING, 1984, 30 (02) :163-175
[5]   A BUNDLE TYPE APPROACH TO THE UNCONSTRAINED MINIMIZATION OF CONVEX NON-SMOOTH FUNCTIONS [J].
GAUDIOSO, M ;
MONACO, MF .
MATHEMATICAL PROGRAMMING, 1982, 23 (02) :216-226
[6]  
GAUDIOSO M, 1985, LECT NOTES ECON MATH, V255, P190
[7]  
HIRIARTURRUTY JB, 1986, N HOLLAND MATH STUDI, V129, P157
[8]   PARAMETRIC APPROACHES TO FRACTIONAL PROGRAMS [J].
IBARAKI, T .
MATHEMATICAL PROGRAMMING, 1983, 26 (03) :345-362
[9]   PROXIMITY CONTROL IN BUNDLE METHODS FOR CONVEX NONDIFFERENTIABLE MINIMIZATION [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1990, 46 (01) :105-122