MUTATIONS IN THE BZIP DOMAIN OF YEAST GCN4 THAT ALTER DNA-BINDING SPECIFICITY

被引:32
|
作者
TZAMARIAS, D
PU, WT
STRUHL, K
机构
关键词
PROTEIN-DNA INTERACTIONS; BZIP PROTEINS; DNA SEQUENCE RECOGNITION;
D O I
10.1073/pnas.89.6.2007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The bZIP class of eukaryotic transcriptional regulators utilize a distinct structural motif that consists of a leucine zipper that mediates dimerization and an adjacent basic region that directly contacts DNA. Although models of the protein-DNA complex have been proposed, the basis of DNA-binding specificity is essentially unknown. By genetically selecting for derivatives of yeast GCN4 that activate transcription from promoters containing mutant binding sites, we isolate an altered-specificity mutant in which the invariant asparagine in the basic region of bZIP proteins (Asn-235) has been changed to tryptophan. Wild-type GCN4 binds the optimal site (ATGACTCAT) with much higher affinity than the mutant site (TTGACTCAA), whereas the Trp-235 protein binds these sites with similar affinity. Moreover, the Trp-235, Ala-235, and Gln-235 derivatives differ from GCN4 in their strong discrimination against GTGACTCAC. These results suggest a direct interaction between Asn-235 and the +/- 4 position of the DNA target site and are discussed in terms of the scissors-grip and induced-fork models of bZIP proteins.
引用
收藏
页码:2007 / 2011
页数:5
相关论文
共 50 条