ON GRADIENT MAXIMUM-PRINCIPLES FOR QUASI-LINEAR ELLIPTIC-EQUATIONS

被引:9
作者
PAYNE, LE [1 ]
PHILIPPIN, GA [1 ]
机构
[1] UNIV LAVAL,QUEBEC CITY G1K 7P4,QUEBEC,CANADA
关键词
MAXIMUM PRINCIPLES; QUASI-LINEAR ELLIPTIC EQUATIONS;
D O I
10.1016/0362-546X(94)90178-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:387 / 398
页数:12
相关论文
共 12 条
[2]  
Hopf E., 1927, SITZBERG PREUSS AKAD, V19, P147
[3]  
Payne L. E., 1986, Applicable Analysis, V23, P43, DOI 10.1080/00036818608839630
[4]   SOME MAXIMUM PRINCIPLES INVOLVING HARMONIC-FUNCTIONS AND THEIR DERIVATIVES [J].
PAYNE, LE ;
PHILIPPIN, GA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (01) :96-104
[5]   ON 2 FREE-BOUNDARY PROBLEMS IN POTENTIAL-THEORY [J].
PAYNE, LE ;
PHILIPPIN, GA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 161 (02) :332-342
[6]   SOME OVERDETERMINED BOUNDARY-VALUE-PROBLEMS FOR HARMONIC-FUNCTIONS [J].
PAYNE, LE ;
PHILIPPIN, GA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1991, 42 (06) :864-873
[7]  
PAYNE LE, 1972, UNPUB ISOPERIMETRIC
[8]   ON A FREE-BOUNDARY PROBLEM IN ELECTROSTATICS [J].
PHILIPPIN, GA .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (05) :387-392
[9]  
Protter M.H., 1967, MAXIMUM PRINCIPLES D
[10]  
Sperb Rene P., 1981, MATH SCI ENG, V157