THE EXISTENCE OF A WEAK SOLUTION OF QUASI-LINEAR ELLIPTIC EQUATION WITH CRITICAL SOBOLV EXPONENT ON UNBOUNDED DOMAIN

被引:11
作者
LI, GB [1 ]
机构
[1] CHINESE ACAD SCI,INST MATH SCI,WUHAN 470071,PEOPLES R CHINA
关键词
D O I
10.1016/S0252-9602(18)30091-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the existence of a weak solution to the following elliptic equation with critical Sobolev exponent on unbounded domain OMEGA is proved [GRAPHICS] where N greater-than-or-equal-to 2 and OMEGA is a smooth domain in R(N), f(x,u) approximately Absolute value of u p.-1 at u = infinity with p. = Np/(N - p), g(x) is-an-element-of p'(OMEGA) with p' = p/(p - 1).
引用
收藏
页码:64 / 74
页数:11
相关论文
共 16 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   A PERTURBATION METHOD IN CRITICAL-POINT THEORY AND APPLICATIONS [J].
BAHRI, A ;
BERESTYCKI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :1-32
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[5]  
EVANS LC, REGIONAL C SERIES MA, V74
[6]   NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR EQUATIONS WITH RAPIDLY (OR SLOWLY) INCREASING COEFFICIENTS [J].
GOSSEZ, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :163-205
[7]  
HARALD B, 1982, WEAK CONVERGENCE MEA
[8]  
LI GB, 1987, ACTA MATH SCI, V7, P329
[9]   MULTIPLE CRITICAL-POINTS OF PERTURBED SYMMETRIC FUNCTIONALS IN W01P [J].
LI, GB .
ACTA MATHEMATICA SCIENTIA, 1987, 7 (04) :431-445
[10]  
Lions P.-L., 1985, LIMIT CASE PART, V1, P145, DOI 10.4171/RMI/6