EUCLIDEAN VERSUS NON-EUCLIDEAN ASPECTS IN SPECTRAL GEOMETRY

被引:0
作者
SUNADA, T
机构
来源
PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT | 1994年 / 116期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this note is to give a survey of recent studies on spectra geometry. In the course of discussion, we put an emphasis on relationships between discrete group actions and the spectra of the Laplacian and magnetic Schrodinger operators on a non-compact Riemannian manifold. We employ typical models of geometry, the Euclidean plane and the non-Euclidean plane, to illustrate how group structures influence the spectra.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 36 条
[1]   DENSITY-OF-STATES IN SPECTRAL GEOMETRY [J].
ADACHI, T ;
SUNADA, T .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :480-493
[2]   FURTHER DISCUSSION OF ROLE OF ELECTROMAGNETIC POTENTIALS IN QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1963, 130 (04) :1625-+
[3]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[4]  
Atiyah M, 1976, ASTERISQUE, V32-33, P43
[5]  
Auslander L., 1966, MEM AM MATH SOC, V62
[6]   THE FUNDAMENTAL GROUP AND THE SPECTRUM OF THE LAPLACIAN [J].
BROOKS, R .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :581-598
[7]   ON THE SPECTRUM OF PERIODIC ELLIPTIC-OPERATORS [J].
BRUNING, J ;
SUNADA, T .
NAGOYA MATHEMATICAL JOURNAL, 1992, 126 :159-171
[8]  
BRUNING J, 1992, ASTERISQUE, V210, P65
[9]   POISSON FORMULA FOR RIEMANN VARIATIONS [J].
CHAZARAIN, J .
INVENTIONES MATHEMATICAE, 1974, 24 (01) :65-82
[10]  
DEVERDIERE YC, 1985, COMMUN MATH PHYS, V102, P497