ON THE NUMBER OF NOWHERE ZERO POINTS IN LINEAR MAPPINGS

被引:5
作者
BAKER, RD
BONIN, J
LAZEBNIK, F
SHUSTIN, E
机构
[1] UNIV DELAWARE,DEPT MATH SCI,NEWARK,DE 19716
[2] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[3] GEORGE WASHINGTON UNIV,DEPT MATH,WASHINGTON,DC 20052
关键词
AMS subject classification code (1991): 06C10; 15A06; 11T99;
D O I
10.1007/BF01215347
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a nonsingular n by n matrix over the finite field GF(q), k = right perpendicularn/2left perpendicular, q = p(a), a greater-than-or-equal-to 1, where p is prime. Let P(A,q) denote the number of vectors x in (GF(q))n such that both x and Ax have no zero component. We prove that for n greater-than-or-equal-to 2, and q > 2 (2n3), P(A,q) greater-than-or-equal-to [(q - 1)(q - 3)]k(q - 2)n-2k and describe all matrices A for which the equality holds. We also prove that the result conjectured in [1], namely that P(A,q) greater-than-or-equal-to 1, is true for all q greater-than-or-equal-to n + 2 greater-than-or-equal-to 3 or q greater-than-or-equal-to n + 1 greater-than-or-equal-to 4.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 4 条
[1]   A NOWHERE-ZERO POINT IN LINEAR MAPPINGS [J].
ALON, N ;
TARSI, M .
COMBINATORICA, 1989, 9 (04) :393-395
[2]  
Fujiwara M., 1916, TOHOKU MATH J, V10, P167
[3]  
Rota G.-C., 1964, Z WAHRSCHEINLICHKEIT, V2, P340, DOI DOI 10.1007/BF00531932
[4]  
WILF HS, 1978, MATH PHYSICAL SCI