Research on Stock Price Prediction Model based on GA Optimized SVM Parameters

被引:1
作者
Liang Bang-long [1 ]
Lin Jie [1 ]
Yuan Guanghui [2 ]
机构
[1] Tongji Univ, Sch Econ & Management, Shanghai 200092, Peoples R China
[2] Shanghai Univ Finance & Econ, Sch Informat Management & Engn, Shanghai 200433, Peoples R China
来源
INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS | 2016年 / 10卷 / 07期
基金
中国国家自然科学基金;
关键词
SVM; genetic algorithm; K fold cross experiment; regression prediction;
D O I
10.14257/ijsia.2016.10.7.24
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper construct the predicted model based on support vector machine (SVM) for the Shanghai Composite Index, acquired the model parameters using genetic algorithm optimization was carried out, combined with k-fold cross method. Experiments based on the start date to February 2011 total 4948 trading day data, 10 fold cross circulation experiments of GA optimization; get the most accurate model parameter of SVM. At last, the regression model is used to predict, and the relative error of regression prediction is 0.11, and the accuracy of regression prediction is higher. In conclusion, this model can be used to predict the Shanghai Composite Index.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 13 条
[1]  
Chaoqun M., 1998, MODERN FORECASTING T, P12
[2]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[3]  
Chunyan L., 2006, APPL RES COMPUTERS, V10, P55
[4]  
Hongbo Z., 2004, J SHAOXING U, V24, P25
[5]  
Jinglong W., 2009, J CENTRAL S U, V40, P180
[6]  
Li Liang-min, 2008, Computer Engineering and Applications, V44, P23
[7]  
Shajun Z., 2011, COMPUTER SOFTWARE AP, V17, P19
[8]  
Shengquan Z., 2009, STOCK PRICE PREDICTI
[9]   MEASURING THE VC-DIMENSION OF A LEARNING-MACHINE [J].
VAPNIK, V ;
LEVIN, E ;
LECUN, Y .
NEURAL COMPUTATION, 1994, 6 (05) :851-876
[10]  
Wei Z., 2010, BASED PREDICTION STO, P102