TANGENT LIE ALGEBROIDS

被引:21
作者
COURANT, T
机构
[1] Dept. of Math., Lake Forest Coll., IL
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 13期
关键词
D O I
10.1088/0305-4470/27/13/026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper shows that a Lie algebroid structure on a smooth vector bundle A --> pi Q gives rise to a Lie algebroid structure on the bundle T A --> Tpi T Q, called the tangent Lie algebroid. The analysis uses global arguments. A Lie algebroid A is equivalent to a certain Poisson structure on A*, and the tangent bundle of any Poisson manifold has a tangent Poisson structure. The tangent Poisson structure on T A* is then dualized to produce the tangent Lie algebroid structure on T A. Local calculations are used, and formulae for local brackets are given.
引用
收藏
页码:4527 / 4536
页数:10
相关论文
共 16 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
ALVAREZSANCHEZ G, 1986, THESIS U CALIFORNIA
[3]   TANGENT DIRAC STRUCTURES [J].
COURANT, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (22) :5153-5168
[4]  
COURANT T, 1993, UNPUB TANGENT POISSO
[5]  
Courant T. J., 1989, T AMS, V319, P331
[6]  
Dirac P. A. M., 1964, LECT QUANTUM MECH
[7]  
Dorfman I.Ya., 1984, NONLINEAR TURBULENT, P1313
[8]   DIRAC STRUCTURES OF INTEGRABLE EVOLUTION-EQUATIONS [J].
DORFMAN, IY .
PHYSICS LETTERS A, 1987, 125 (05) :240-246
[9]   PRESYMPLECTIC MANIFOLDS AND DIRAC-BERGMANN THEORY OF CONSTRAINTS [J].
GOTAY, MJ ;
NESTER, JM ;
HINDS, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (11) :2388-2399
[10]  
HANSON AJ, 1976, ACCADEMIA NAZIONALE, V22