A PRIMAL PROJECTIVE INTERIOR POINT METHOD FOR LINEAR-PROGRAMMING

被引:5
作者
GOLDFARB, D
XIAO, D
机构
[1] Department of Industrial Engineering and Operations Research, Columbia University, New York, 10027, NY
关键词
INTERIOR POINT METHODS; LINEAR PROGRAMMING; FRACTIONAL LINEAR PROGRAMMING; PROJECTIVE ALGORITHM; KARMARKARS ALGORITHM; POLYNOMIAL-TYPE ALGORITHM;
D O I
10.1007/BF01586924
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a new projective interior point method for linear programming with unknown optimal value. This algorithm requires only that an interior feasible point be provided. It generates a strictly decreasing sequence of objective values and within polynomial time, either determines an optimal solution, or proves that the problem is unbounded. We also analyze the asymptotic convergence rate of our method and discuss its relationship to other polynomial time projective interior point methods and the affine scaling method.
引用
收藏
页码:17 / 43
页数:27
相关论文
共 15 条
[1]   A Monotonic Projective Algorithm for Fractional Linear Programming [J].
Anstreicher, Kurt M. .
ALGORITHMICA, 1986, 1 (1-4) :483-498
[2]   A VARIATION ON KARMARKAR ALGORITHM FOR SOLVING LINEAR-PROGRAMMING PROBLEMS [J].
BARNES, ER .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :174-182
[3]  
BARNES ER, 1988, 88101 NEW YORK U GRA
[4]  
DIKIN II, 1967, DOKL AKAD NAUK SSSR+, V174, P747
[5]  
Dikin II., 1974, UPRAVLYAEMYE SISTEMI, V12, P54
[6]   A SELF-CORRECTING VERSION OF KARMARKARS ALGORITHM [J].
GOLDFARB, D ;
MEHROTRA, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :1006-1015
[7]   CONICAL PROJECTION ALGORITHMS FOR LINEAR-PROGRAMMING [J].
GONZAGA, CC .
MATHEMATICAL PROGRAMMING, 1989, 43 (02) :151-173
[8]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[9]  
MEGIDDO N, 1987, ADV EC THEORY, P225
[10]   INTERIOR PATH FOLLOWING PRIMAL-DUAL ALGORITHMS .1. LINEAR-PROGRAMMING [J].
MONTEIRO, RDC ;
ADLER, I .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :27-41