SIMPLIFIED UNDERSTANDING AND EFFICIENT DECODING OF A CLASS OF ALGEBRAIC-GEOMETRIC CODES

被引:24
作者
FENG, GL
WEI, VK
TZENG, KK
机构
[1] BELLCORE,MORRISTOWN,NJ 07960
[2] LEHIGH UNIV,DEPT ELECT ENGN & COMP SCI,BETHLEHEM,PA 18015
基金
美国国家科学基金会;
关键词
ALGEBRAIC-GEOMETRIC CODES; DECODING; GAUSSIAN ELIMINATION; HANKEL MATRIX; DESIGNED DISTANCE;
D O I
10.1109/18.335973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient decoding algorithm for algebraic-geometric codes is presented. For codes from a large class of irreducible plane curves, including Hermitian curves, it can correct up to [(d* - 1)/2] errors, where d* is the designed minimum distance. With it we also obtain a proof of d(min) greater-than-or-equal-to d* without directly using the Riemann-Roch theorem. The algorithm consists of Gaussian elimination on a specially arranged syndrome matrix, followed by a novel majority voting scheme. A fast implementation incorporating block Hankel matrix techniques is obtained whose worst-case running time is O(mn2), where m is the degree of the curve. Applications of our techniques to decoding other algebraic-geometric codes, to decoding BCH codes to actual minimum distance, and to two-dimensional shift register synthesis are also presented.
引用
收藏
页码:981 / 1002
页数:22
相关论文
共 32 条
[11]   DECODING ALGEBRAIC GEOMETRIC CODES UP TO THE DESIGNED MINIMUM DISTANCE [J].
FENG, GL ;
RAO, TRN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (01) :37-45
[12]   A GENERALIZED EUCLIDEAN ALGORITHM FOR MULTISEQUENCE SHIFT-REGISTER SYNTHESIS [J].
FENG, GL ;
TZENG, KK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :584-594
[13]  
GOPPA VD, 1981, SOV MATH DOKL, V24, P75
[14]  
GOPPA VD, 1983, MATH USSR IZV, V21, P75
[15]   FAST DECODING OF CODES FROM ALGEBRAIC PLANE-CURVES [J].
JUSTESEN, J ;
LARSEN, KJ ;
JENSEN, HE ;
HOHOLDT, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (01) :111-119
[16]   CONSTRUCTION AND DECODING OF A CLASS OF ALGEBRAIC-GEOMETRY CODES [J].
JUSTESEN, J ;
LARSEN, KJ ;
JENSEN, HE ;
HAVEMOSE, A ;
HOHOLDT, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (04) :811-821
[17]   THE INVERSES OF BLOCK HANKEL AND BLOCK TOEPLITZ MATRICES [J].
LABAHN, G ;
CHOI, DK ;
CABAY, S .
SIAM JOURNAL ON COMPUTING, 1990, 19 (01) :98-123
[18]   ON A DECODING ALGORITHM FOR CODES ON MAXIMAL CURVES [J].
PELLIKAAN, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (06) :1228-1232
[19]   DECODING GEOMETRIC GOPPA CODES USING AN EXTRA PLACE [J].
PORTER, SC ;
SHEN, BZ ;
PELLIKAAN, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) :1663-1676
[20]   DECODING BINARY 2-D CYCLIC CODES BY THE 2-D BERLEKAMP-MASSEY ALGORITHM [J].
SAKATA, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1200-1203