Seismic wave modeling in viscoelastic VTI media using spectral element method

被引:3
作者
Ping, Ping [1 ,2 ]
Xu, Yixian [1 ,2 ,3 ]
Zhang, Yu [2 ,4 ,5 ]
Yang, Bo [1 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan, Hubei, Peoples R China
[2] China Univ Geosci, Subsurface Multi Scale Imaging Lab, Wuhan 430074, Hubei, Peoples R China
[3] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[4] Wuhan Univ, Sch Geodesy & Geomat, Wuhan 430079, Peoples R China
[5] Minist Educ, Key Lab Geospace Environm & Geodesy, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral element method (SEM); Viscoelastic vertical transversely isotropic (VTI) media; Perfectly matched layer; Wave modeling;
D O I
10.1007/s11589-014-0094-8
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral element method (SEM) for elastic media is well known for its great flexibility and high accuracy in solving problems with complex geometries. It is an advanced choice for wave simulations. Due to anelasticity of earth media, SEM for elastic media is no longer appropriate. On fundamental of the second-order elastic SEM, this work takes the viscoelastic wave equations and the vertical transversely isotropic (VTI) media into consideration, and establishes the second-order SEM for wave modeling in viscoelastic VTI media. The second-order perfectly matched layer for viscoelastic VTI media is also introduced. The problem of handling the overlapped absorbed corners is solved. A comparison with the analytical solution in a twodimensional viscoelastic homogeneous medium shows that the method is accurate in the wave-field modeling. Furtherly, numerical validation also presents its great flexibility in solving wave propagation problems in complex heterogeneous media. This second-order SEM with perfectly matched layer for viscoelastic VTI media can be easily applied in wave modeling in a limited region.
引用
收藏
页码:553 / 565
页数:13
相关论文
共 42 条
[1]  
Carcione J. M., 2007, WAVE FIELDS REAL MED
[2]   Solving elastodynamics in a fluid-solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids [J].
Chaljub, E ;
Capdeville, Y ;
Vilotte, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (02) :457-491
[3]   Spectral element modelling of three-dimensional wave propagation in a self-gravitating Earth with an arbitrarily stratified outer core [J].
Chaljub, E ;
Valette, B .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 158 (01) :131-141
[4]   The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations [J].
Che Cheng-Xuan ;
Wang Xiu-Ming ;
Lin Wei-Jun .
APPLIED GEOPHYSICS, 2010, 7 (02) :174-184
[5]   RegSEM: a versatile code based on the spectral element method to compute seismic wave propagation at the regional scale [J].
Cupillard, Paul ;
Delavaud, Elise ;
Burgos, Gael ;
Festa, Geatano ;
Vilotte, Jean-Pierre ;
Capdeville, Yann ;
Montagner, Jean-Paul .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 188 (03) :1203-1220
[6]   Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements [J].
Dauksher, W ;
Emery, AF .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 26 (02) :115-128
[7]  
[Дмитриев Максим Николаевич Dmitriev M.n.], 2011, [Сибирский журнал вычислительной математики, Siberian Journal of Numerical Mathematics, Sibirskii zhurnal vychislitel'noi matematiki], V14, P333
[8]  
[Дмитриев Максим Николаевич Dmitriev M.n.], 2012, [Сибирский журнал вычислительной математики, Siberian Journal of Numerical Mathematics, Sibirskii zhurnal vychislitel'noi matematiki], V15, P45
[9]   Finite-element methods for viscoelastic and azimuthally anisotropic media [J].
Du, QZ ;
Yang, HZ .
ACTA PHYSICA SINICA, 2003, 52 (08) :2010-2014
[10]  
[胡元鑫 Hu Yuanxin], 2011, [兰州大学学报. 自然科学版, Journal of Lanzhou University. Natural Science], V47, P24