USING RADIAL BASIS FUNCTIONS TO APPROXIMATE A FUNCTION AND ITS ERROR-BOUNDS

被引:154
作者
LEONARD, JA [1 ]
KRAMER, MA [1 ]
UNGAR, LH [1 ]
机构
[1] UNIV PENN,DEPT CHEM ENGN,PHILADELPHIA,PA 19104
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1992年 / 3卷 / 04期
关键词
D O I
10.1109/72.143377
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel network called the validity index network (VI net) is presented. The VI net, derived from radial basis function networks, fits functions and calculates confidence intervals for its predictions, indicating local regions of poor fit and extrapolation.
引用
收藏
页码:624 / 626
页数:3
相关论文
共 12 条
  • [1] CHAND DR, 1978, J ASSOC COMPUT MACH, V17, P78
  • [2] DUDA RO, 1973, PATTERN ANAL SCENE C
  • [3] LEONARD JA, 1992, IN PRESS COMPUT CHEM
  • [4] MacQueen J., 1967, 5 BERKELEY S MATH ST, P281
  • [5] Medgassy P., 1961, DECOMPOSITION SUPERP
  • [6] MENDENHALL W, 1983, INTRO PROBABILITY ST
  • [7] Fast Learning in Networks of Locally-Tuned Processing Units
    Moody, John
    Darken, Christian J.
    [J]. NEURAL COMPUTATION, 1989, 1 (02) : 281 - 294
  • [8] Universal Approximation Using Radial-Basis-Function Networks
    Park, J.
    Sandberg, I. W.
    [J]. NEURAL COMPUTATION, 1991, 3 (02) : 246 - 257
  • [9] ESTIMATION OF A PROBABILITY DENSITY-FUNCTION AND MODE
    PARZEN, E
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (03): : 1065 - &
  • [10] PROBABILISTIC NEURAL NETWORKS
    SPECHT, DF
    [J]. NEURAL NETWORKS, 1990, 3 (01) : 109 - 118