Iterative methods for solving linear operator equations in Banach spaces
被引:0
作者:
Chistyakov, P. A.
论文数: 0引用数: 0
h-index: 0
机构:
Russian Acad Sci, Inst Math & Mech, Ural Branch, Physicomath Sci, Moscow, RussiaRussian Acad Sci, Inst Math & Mech, Ural Branch, Physicomath Sci, Moscow, Russia
Chistyakov, P. A.
[1
]
机构:
[1] Russian Acad Sci, Inst Math & Mech, Ural Branch, Physicomath Sci, Moscow, Russia
来源:
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN
|
2011年
/
17卷
/
03期
关键词:
iterative method;
duality mapping;
B-symmetric operator;
B-positive operator;
minimum-norm solution;
Bregman distance;
uniformly convex space;
smooth space;
Xu-Roach characteristic inequality;
modulus of smoothness of a space;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Iterative methods for solving the linear operator equation Ax = y with B-symmetric B-positive operator acting from a Banach space X to a Banach space Y are considered. The space X is assumed to be uniformly convex and smooth, whereas Y is an arbitrary Banach space. The cases of exact and disturbed data are considered and the strong (norm) convergence of the iterative processes is proved.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 5 条
[1]
Cioranescu I., 1990, GEOMETRY BANACH SPAC
[2]
Landweber L., 1951, AM J MATH, V73, P615, DOI [10.2307/2372313, DOI 10.2307/2372313]
[3]
Lindenstrauss J., 1979, CLASSICAL BANACH SPA, VII