Definitely self-adjoint boundary value problems

被引:0
作者
Bliss, Gilbert A. [1 ]
机构
[1] Univ Chicago, Chicago, IL USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:413 / 428
页数:16
相关论文
共 50 条
[31]   Eigenvalues of Fourth-Order Boundary Value Problems with Self-Adjoint Canonical Boundary Conditions [J].
Xiao-xia Lv ;
Ji-jun Ao .
Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 :833-846
[32]   Eigenvalues of Fourth-Order Boundary Value Problems with Self-Adjoint Canonical Boundary Conditions [J].
Lv, Xiao-xia ;
Ao, Ji-jun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) :833-846
[33]   FORMALLY SELF-ADJOINT QUASI-DIFFERENTIAL OPERATORS AND BOUNDARY-VALUE PROBLEMS [J].
Goriunov, Andrii ;
Mikhailets, Vladimir ;
Pankrashkin, Konstantin .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[34]   REGULAR SELF-ADJOINT BOUNDARY-VALUE-PROBLEMS FOR A MULTIDIMENSIONAL EQUATION OF MIXED TYPE [J].
KAL'MENOV, TS .
DIFFERENTIAL EQUATIONS, 1986, 22 (10) :1194-1201
[35]   Application of self-adjoint boundary value problems to investigation of stability of periodic delay systems [J].
Dolgii, Yu. F. .
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2006, 12 (02) :78-87
[36]   Application of self-adjoint boundary value problems to investigation of stability of periodic delay systems [J].
Dolgii Yu.F. .
Proceedings of the Steklov Institute of Mathematics, 2006, 255 (Suppl 2) :S16-S25
[37]   Higher-order self-adjoint boundary-value problems on time scales [J].
Anderson, Douglas R. ;
Guseinov, Gusein Sh. ;
Hoffacker, Joan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (02) :309-342
[38]   EXISTENCE OF POSITIVE SOLUTIONS FOR SELF-ADJOINT BOUNDARY-VALUE PROBLEMS WITH INTEGRAL BOUNDARY CONDITIONS AT RESONANCE [J].
Yang, Aijun ;
Sun, Bo ;
Ge, Weigao .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
[39]   NEGATIVE SPECTRUM OF STRONGLY ELLIPTICAL SELF-ADJOINT BOUNDARY PROBLEMS [J].
GRUBB, G .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (05) :409-&
[40]   The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes [J].
Nazarov, SA .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (05) :947-1014