Twin edge colorings of certain square graphs and product graphs

被引:3
作者
Rajarajachozhan, R. [1 ]
Sampathkumar, R. [2 ]
机构
[1] Annamalai Univ, Dept Math, Annamalainagar 608002, Tamil Nadu, India
[2] Annamalai Univ, Fac Engn & Technol, Math Sect, Annamalainagar 608002, Tamil Nadu, India
关键词
twin edge coloring; twin chromatic index; Cartesian product;
D O I
10.5614/ejgta.2016.4.1.7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A twin edge k-coloring of a graph G is a proper edge k-coloring of G with the elements of Z(k) so that the induced vertex k-coloring, in which the color of a vertex v in G is the sum in Z(k) of the colors of the edges incident with v, is a proper vertex k-coloring. The minimum k for which G has a twin edge k-coloring is called the twin chromatic index of G. Twin chromatic index of the square P-n(2), n >= 4, and the square C-n(2), n >= 6, are determined. In fact, the twin chromatic index of the square C-7(2) is Delta + 2, where Delta is the maximum degree. Twin chromatic index of C-m square P-n is determined, where square denotes the Cartesian product. C-r and P-r are, respectively, the cycle, and the path on r vertices each.
引用
收藏
页码:79 / 93
页数:15
相关论文
共 3 条
[1]  
Andrews E., 2014, B I COMBIN APPL, V70, P28
[2]   ON TWIN EDGE COLORINGS OF GRAPHS [J].
Andrews, Eric ;
Helenius, Laars ;
Johnston, Daniel ;
VerWys, Jonathon ;
Zhang, Ping .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) :613-627
[3]  
Ranganathan K., 2012, TXB GRAPH THEORY