ON LAGRANGE INTERPOLATION AT DISTURBED ROOTS OF UNITY

被引:11
作者
CHUI, CK [1 ]
SHEN, XC [1 ]
ZHONG, LF [1 ]
机构
[1] BEIJING UNIV,DEPT MATH,BEIJING,PEOPLES R CHINA
关键词
DISTURBED ROOTS OF UNITY; MARCINKIEWICZ-ZYGMUND TYPE INEQUALITY; LAGRANGE INTERPOLATION; ORDER OF APPROXIMATION; AP-WEIGHTS; HP-INTERPOLATION;
D O I
10.2307/2154377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Z(nk) = e(it)nk, 0 less-than-or-equal-to t(n0) < ... < t(nn) < 2pi , f a function in the disc algebra A , and mu(n) = max{\t(nk) - 2kpi/(n + 1)\: 0 less-than-or-equal-to k less-than-or-equal-to n} . Denote by L(n)(f; .) the polynomial of degree n that agrees with f at {Z(nk): k = 0, ... , n} In this paper, we prove that for every p, 0 < p < infinity, there exists a delta(p) > 0, such that \\L(n)(f; .) - f\\p = O(omega(f; 1/n)) whenever mu(n) less-than-or-equal-to delta(p)/(n + 1) . It must be emphasized that delta(p) necessarily depends on p , in the sense that there exists a family {z(nk): k = 0, ... , n} with mu(n) = delta2/(n + 1) and such that \\L(n)(f; .) - f\\2 = O(omega(f; 1/n)) for all f is-an-element-of A but sup{\\Ln(f; .)\\p: f is-an-element-of A, \\f\\infinity = 1} diverges for sufficiently large values of p. In establishing our estimates, we also derive a Marcinkiewicz-Zygmund type inequality for {Z(nk)}.
引用
收藏
页码:817 / 830
页数:14
相关论文
共 19 条
[1]  
ALPER SJ, 1969, IZV VYSSH UCHEBN ZAV, V11, P12
[2]   ON HERMITE-FEJER INTERPOLATION IN A JORDAN DOMAIN [J].
CHUI, CK ;
SHEN, XC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (01) :93-109
[3]   NORMS OF ANALYTIC INTERPOLATION PROJECTIONS ON GENERAL DOMAINS [J].
CLUNIE, JG ;
MASON, JC .
JOURNAL OF APPROXIMATION THEORY, 1984, 41 (02) :149-158
[5]  
Duren P. L., 1970, THEORY HP SPACES
[6]  
Fejer L., 1916, GOTTINGER NACHRICHTE, P66
[7]  
GAIER D, 1980, VORLESUNGEN APPROXIM
[8]  
Koosis P., 1980, LONDON MATH SOC LECT, V40
[9]  
LOZINSKI SM, 1941, MAT SBORNIK, V8, P57
[10]   WEIGHTED NORM INEQUALITIES FOR HARDY MAXIMAL FUNCTION [J].
MUCKENHOUPT, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 165 (MAR) :207-+