SUBHARMONIC SOLUTIONS OF CONSERVATIVE-SYSTEMS WITH NONCONVEX POTENTIALS

被引:33
作者
FONDA, A [1 ]
LAZER, AC [1 ]
机构
[1] UNIV MIAMI,DEPT MATH & COMP SCI,CORAL GABLES,FL 33124
关键词
CRITICAL POINT; SADDLE POINT THEOREM; PALAIS-SMALE CONDITION;
D O I
10.2307/2159584
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of second order differential equations u" + del G(u) = e(t) = e(t + T), where the potential G: R(n) --> R is not necessarily convex. Using critical point theory, we give conditions under which the system has infinitely many subharmonic solutions.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1933, ANN MATH PURE APPL
[2]   A BIRKHOFF-LEWIS TYPE RESULT FOR A CLASS OF HAMILTONIAN-SYSTEMS [J].
BENCI, V ;
FORTUNATO, D .
MANUSCRIPTA MATHEMATICA, 1987, 59 (04) :441-456
[3]   NON-LINEAR OSCILLATIONS AND BOUNDARY-VALUE-PROBLEMS FOR HAMILTONIAN-SYSTEMS [J].
CLARKE, FH ;
EKELAND, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1982, 78 (04) :315-333
[4]   SUBHARMONIC SOLUTIONS AND MORSE-THEORY [J].
CONLEY, C ;
ZEHNDER, E .
PHYSICA A, 1984, 124 (1-3) :649-657
[5]  
DING T, PERIODIC SOLUTIONS D
[6]   SUBHARMONICS FOR CONVEX NONAUTONOMOUS HAMILTONIAN-SYSTEMS [J].
EKELAND, I ;
HOFER, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (01) :1-36
[7]   SUBHARMONIC OSCILLATIONS OF FORCED PENDULUM-TYPE EQUATIONS [J].
FONDA, A ;
WILLEM, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 81 (02) :215-220
[8]  
FONDA A, SUBHARMONIC SOLUTION
[9]  
JACOBOWITZ H, 1976, J DIFFER EQUATIONS, V29, P37
[10]  
MAWHIN J, 1988, CRITICAL POINT THEOR