PERTURBATIONS OF ATTRACTORS OF DIFFERENTIAL-EQUATIONS

被引:27
作者
PLISS, VA [1 ]
SELL, GR [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-0396(91)90066-I
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study small C1-perturbations of a differential equation that has a hyperbolic attractor K. We show that if K has a suitable Lipschitz property and if the perturbation is small enough, then there is a homeomorphism H : K→KY, where KY is a hyperbolic attractor for the perturbed equation. Examples are included. © 1991.
引用
收藏
页码:100 / 124
页数:25
相关论文
共 19 条
[1]  
Arnold VI., 1983, GEOMETRICAL METHODS
[2]  
Carr J., 1981, APPL CTR MANIFOLD TH
[3]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[4]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[5]  
FOIAS C, IN PRESS PHYS D
[6]  
Mallet-Paret J., 1988, J AM MATH SOC, V1, P805, DOI [10.1090/S0894-0347-1988-0943276-7, DOI 10.1090/S0894-0347-1988-0943276-7]
[7]   NONLINEAR GALERKIN METHODS [J].
MARION, M ;
TEMAM, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1139-1157
[8]   MELNIKOV TRANSFORMS, BERNOULLI BUNDLES, AND ALMOST PERIODIC PERTURBATIONS [J].
MEYER, KR ;
SELL, GR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :63-105
[9]   The stability question of differential equations. [J].
Perron, O .
MATHEMATISCHE ZEITSCHRIFT, 1930, 32 :703-728
[10]  
PERRON O, 1928, MATH Z, V29, P129