Well-posedness of the Dirichlet Problem for a Class of Multidimensional Elliptic-parabolic Equations

被引:0
作者
Aldashev, S. A. [1 ]
机构
[1] Kazakhstan Natl Pedag Univ, 86 Tolebi St, Alma Ata 050012, Kazakhstan
来源
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA | 2016年 / 16卷 / 02期
关键词
correctness; many-dimensional equation; Dirichlet problem; Bessel's function;
D O I
10.18500/1816-9791-2016-16-2-125-132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Correctness of boundary problems in the plane for elliptic equations is well analyzed by analitic function theory of complex variable. There appear principal difficulties in similar problems when the number of independent variables is more than two. An attractive and suitable method of singular integral equations is less strong because of lock of any complete theory of multidimensional singular integral equations. In the work, the method proposed in the author's works, shows the unique solvability and obtained the explicit form of the Dirichlet problem in the cylindric domain for a class of multidimensional elliptic-parabolic equations.
引用
收藏
页码:125 / 132
页数:8
相关论文
共 14 条
[1]  
Aldashev S., 1994, BOUNDARY VALUE PROBL
[2]   Well-posedness of the Dirichlet Problem in a Cylindrical Domain for Multidimensional Elliptic-parabolic Equation [J].
Aldashev, S. A. .
IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2014, 14 (01) :5-10
[3]  
[Алдашев Серик Аймурзаевич Aldashev S.A.], 2012, [Вестник Новосибирского государственного университета. Серия: Математика, механика, информатика, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Matematika, mekhanika, informatika], V12, P7
[4]  
Aldashev S. A., 1998, DIFF URAVN, V34, P64
[5]  
Aldashev S.A., 2007, DEGENERATE MULTIDIME
[6]  
BEITMEN G, 1974, VYSSHIE TRANSTSENDEN, V2
[7]  
Bers L, 1966, URAVNENIIA S CHASTNY
[8]  
Fikera G., 1963, SBORNIK PEREVODOV MA, V7, P99
[9]  
Friedman A, 1968, URAVNENIIA S CHASTNY
[10]  
Kamke E., 1965, SPRAVOCHNIK OBYKNOVE