SPECULATIONS ABOUT THE TOPOLOGY OF RATIONAL-POINTS - AN UPDATE

被引:0
作者
MAZUR, B [1 ]
机构
[1] HARVARD UNIV, DEPT MATH, CAMBRIDGE, MA 02138 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to a discussion concerning the conjecture that if V is a smooth variety over the rational numbers, and if its set of rational points is Zariski-dense in V, then the topological closure of the set of rational points of V is an open subset of the real locus of V.
引用
收藏
页码:165 / 181
页数:17
相关论文
共 56 条
[1]   UNIFORM-DISTRIBUTION OF INTEGRAL POINTS ON 3-DIMENSIONAL SPHERES VIA MODULAR FORMS [J].
ARENSTORF, RF ;
JOHNSON, D .
JOURNAL OF NUMBER THEORY, 1979, 11 (02) :218-238
[2]   THE NUMBER OF RATIONAL-POINTS OF BOUNDED HEIGHT OF ALGEBRAIC-VARIETIES [J].
BATYREV, VV ;
MANIN, YI .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :27-43
[3]  
BIRCH B. J., 1957, MATHEMATIKA, V4, P102
[4]  
BURNOL JF, 1992, DUKE MATH J, V66, pA117
[5]  
CALL G, 1993, CANONICAL HEIGHTS VA
[6]   NEGATIVE INTEGER VALUES IN DIRICHLET SERIES ASSOCIATED WITH A POLYNOMIAL .2. [J].
CASSOUNOGUES, P .
AMERICAN JOURNAL OF MATHEMATICS, 1984, 106 (02) :255-299
[7]  
Colliot-Thelene J.-L, 1986, P INT C MATHEMATICIA, VI, P641
[8]   THE HASSE PRINCIPLE AND THE WEAK APPROXIMATION AND A SCHINZEL HYPOTHESIS [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
ACTA ARITHMETICA, 1982, 41 (01) :33-53
[9]   DESCENT FOR RATIONAL VARITIES .2. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (02) :375-492
[10]  
COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V374, P72