DIFFUSION LIMIT FOR THE LINEAR BOLTZMANN-EQUATION OF THE NEUTRON-TRANSPORT THEORY

被引:9
作者
BANASIAK, J
MIKA, JR
机构
[1] University of Natal, Durban, 4001, King George V Avenue
关键词
D O I
10.1002/mma.1670171306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present the asymptotic analysis of the linear Boltzmann equation for neutrons with a small positive parameter epsilon related to the mean free path, based upon the Chapman-Enskog procedure of the kinetic theory. We prove that if proper initial conditions derived by considering initial layer solutions are used, the diffusion equation gives the uniform approximation to the neutron density function with the O(epsilon2) accuracy.
引用
收藏
页码:1071 / 1087
页数:17
相关论文
共 16 条
[1]   NEUTRON-TRANSPORT WITH PERIODIC BOUNDARY-CONDITIONS [J].
ANGELESCU, N ;
MARINESCU, N ;
PROTOPOPESCU, V .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 1976, 5 (2-3) :115-125
[2]   ASYMPTOTIC ANALYSIS OF THE FOKKER-PLANCK EQUATION RELATED TO BROWNIAN-MOTION [J].
BANASIAK, J ;
MIKA, JR .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1994, 4 (01) :17-33
[3]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[4]  
BEALS R, 1987, J MATH ANAL APPL, V12, P370
[6]  
BORYSIEWICZ M, 1981, MATH METHOD APPL SCI, V3, P405
[7]  
DAUTREY R, 1990, MATH ANAL NUMERICAL, V2
[8]  
DAUTREY R, 1990, MATH ANAL NUMERICAL, V5
[9]  
DAUTREY R, 1990, MATH ANAL NUMERICAL, V3
[10]  
Degond P., 1987, Transport Theory and Statistical Physics, V16, P589, DOI 10.1080/00411458708204307