PHASE-SPACE ANALYSIS OF BURSTING BEHAVIOR IN KOLMOGOROV FLOW

被引:28
作者
ARMBRUSTER, D
HEILAND, R
KOSTELICH, EJ
NICOLAENKO, B
机构
[1] Dept. of Mathematics, Arizona State University, Tempe
来源
PHYSICA D | 1992年 / 58卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0167-2789(92)90125-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
PDE simulations for the Kolmogorov flow are analyzed in terms of phase-space concepts. The tool used is the proper orthogonal decomposition method which extracts coherent structures and prominent features of a random or turbulent dataset. We analyze a quasiperiodic regime and an intermittent regime. We derive two eigenfunctions that determine the dynamics and structure of the quasiperiodic case and find a third one associated with the unstable manifold of the bursts of the intermittent regime. Calculations are performed for streamfunction data and vorticity data which show substantial differences. It is argued that the streamfunction data demonstrate the low dimensional phase-space dynamics of the large scales whereas the vorticity data show an enstrophy cascade.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 18 条
[1]   KURAMOTO-SIVASHINSKY DYNAMICS ON THE CENTER-UNSTABLE MANIFOLD [J].
ARMBRUSTER, D ;
GUCKENHEIMER, J ;
HOLMES, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1989, 49 (03) :676-691
[2]   THE DYNAMICS OF COHERENT STRUCTURES IN THE WALL REGION OF A TURBULENT BOUNDARY-LAYER [J].
AUBRY, N ;
HOLMES, P ;
LUMLEY, JL ;
STONE, E .
JOURNAL OF FLUID MECHANICS, 1988, 192 :115-173
[3]  
AUBRY N, 1991, PRESERVING SYMMETRIE
[4]  
AUBRY N, 1991, SPATIO TEMPORAL SYMM
[5]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[6]  
KIRKBY M, 1992, IN PRESS ZAMP
[7]   PRACTICAL CONSIDERATIONS IN ESTIMATING DIMENSION FROM TIME-SERIES DATA [J].
KOSTELICH, EJ ;
SWINNEY, HL .
PHYSICA SCRIPTA, 1989, 40 (03) :436-441
[8]  
Lumley J. L., 1967, ATMOSPHERIC TURBULEN
[9]  
Mesalkin L D., 1961, J APPL MATH MECH, V25, P1700, DOI [10.1016/0021-8928(62)90149-1, DOI 10.1016/0021-8928(62)90149-1]
[10]  
Nepomnyashchii A. A., 1976, Prikladnaya Matematika i Mekhanika, V40, P886