A SHARP FORM OF NEVANLINNAS 2ND FUNDAMENTAL THEOREM

被引:28
作者
HINKKANEN, A
机构
[1] Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, 61801, IL
关键词
AMS; (1991); Classification:; Primary; 30D35;
D O I
10.1007/BF02100617
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be meromorphic in the plane. We find a sharp upper bound for the error term [GRAPHICS] in Nevanlinna's second fundamental theorem. For any positive increasing functions phi(t)/t and p(t) with [GRAPHICS] and [GRAPHICS] we have S(r,f)) less-than-or-equal-to log+{phi(T(r,f))/p(r)}+O(1) as r --> infinity outside a set E with [GRAPHICS]. Further if psi(t)/t is positive and increasing and [GRAPHICS] then there is an entire f such that S(r,f) greater-than-or-equal-to log-psi(T(r,f)) outside a set of finite linear measure. We also prove analogous results for functions meromorphic in a disk.
引用
收藏
页码:549 / 574
页数:26
相关论文
共 14 条
[1]  
BOREL E, 1896, ACTA MATH, V20, P357
[2]   LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION [J].
GOLDBERG, AA ;
GRINSHTEIN, VA .
MATHEMATICAL NOTES, 1976, 19 (3-4) :320-323
[3]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[4]   THE ERROR TERM IN NEVANLINNA THEORY [J].
LANG, S .
DUKE MATHEMATICAL JOURNAL, 1988, 56 (01) :193-218
[6]  
LANG S, 1990, LECT NOTES MATH, V1433
[7]  
MILES J, IN PRESS J LONDON MA
[8]  
Nevanlinna R., 1974, THEOREME PICARDBOREL
[9]  
NEVANLINNA R, 1931, B SCI MATH, V55, P140
[10]   SOMETIMES EFFECTIVE "THUE-SIEGEL-ROTH-SCHMIDT-NEVANLINNA BOUNDS, OR BETTER [J].
OSGOOD, CF .
JOURNAL OF NUMBER THEORY, 1985, 21 (03) :347-389