AUTOMORPHISM GROUPS OF CYCLOTOMIC SCHEMES OVER FINITE NEAR-FIELDS

被引:4
作者
Churikov, D. V. [1 ]
Vasil'ev, A. V. [1 ,2 ]
机构
[1] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia
[2] Sobolev Inst Math, Pr Koptyuga 4, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2016年 / 13卷
关键词
near-field; cyclotomic scheme; automorphism group of a scheme; 2-closure of a permutation group; 4-transitive permutation groups;
D O I
10.17377/semi.2016.13.099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that apart from a finite number of known exceptions the automorphism group of a nontrivial cyclotomic scheme over a finite near-field K is isomorphic to a subgroup of the group AFL(1, F), where F is a field with vertical bar F vertical bar = broken vertical bar K broken vertical bar. Moreover, we obtain that the automorphism group of such a scheme is solvable if the base group of the scheme is solvable.
引用
收藏
页码:1271 / 1282
页数:12
相关论文
共 20 条
[1]  
Babai L., 1983, P 15 ANN ACM S THEOR, P171, DOI [DOI 10.1145/800061.808746, 10.1145/800061.808746]
[2]   On cyclotomic schemes over finite near-fields [J].
Bagherian, J. ;
Ponomarenko, Ilia ;
Barghi, A. Rahnamai .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2008, 27 (02) :173-185
[3]  
Bannai E., 1984, ALGEBRAIC COMBINATOR
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[6]  
DELSARTE P, 1973, PHILIPS RES REPORTS
[7]   Two-closure of odd permutation group in polynomial time [J].
Evdokimov, S ;
Ponomarenko, I .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :221-232
[8]  
Faradzev I. A., 1994, INVESTIGATIONS ALGEB, V84
[9]  
GAP Group, 2016, ALG PROGR VERS 4 8 5
[10]  
Huppert B., 1957, MATH Z, V68, P126