THE RADON-TRANSFORM IS AN ISOMORPHISM BETWEEN L(2)(B-A) AND H-E(Z(A))

被引:4
|
作者
RAMM, AG [1 ]
机构
[1] KANSAS STATE UNIV AGR & APPL SCI,DEPT MATH,MANHATTAN,KS 66506
关键词
RADON TRANSFORM; ISOMORPHISM; RANGE OF THE RADON TRANSFORM;
D O I
10.1016/0893-9659(94)00105-L
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the radon transform R is an isomorphism between X := L(2)(B-a) and Y := H-e(Z(a)), where B-a is the-ball of radius a centered at the origin in R(n), n greater than or equal to 2, and Z(a) := S-n-1 x [-a,a], S-n-1 is the unit sphere in R(n), and H-e(Z(a)) is the space of even functions g(alpha,p) which vanish at p = +/-a, satisfy the moment conditions,and have finite norm (integral(Sn-1) integral(-infinity)(infinity) \Fg\ (1 + lambda(2))((n-1)/2) d lambda d alpha)(1/2) := \g\ < infinity.
引用
收藏
页码:25 / 29
页数:5
相关论文
empty
未找到相关数据