FORMATION OF A PSEUDOGAP IN THE 2D SYMMETRICAL ANDERSON LATTICE MODEL

被引:1
|
作者
MCQUEEN, PG
HESS, DW
SERENE, JW
机构
[1] Complex Systems Theory Branch, Naval Research Laboratory, Washington, DC 20375-5345
来源
PHYSICA B | 1994年 / 194卷
关键词
D O I
10.1016/0921-4526(94)90914-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We calculated the spin susceptibility and self-energy for the 2D symmetric Anderson lattice model in a conserving approximation. The susceptibility rises with decreasing temperature to reach a maximum and then drops abruptly, and the density of states shows a crossover from metallic behavior at high temperatures to insulating behavior at low temperatures.
引用
收藏
页码:1169 / 1170
页数:2
相关论文
共 50 条
  • [1] PSEUDOGAP FORMATION IN THE SYMMETRICAL ANDERSON LATTICE MODEL
    MCQUEEN, PG
    HESS, DW
    SERENE, JW
    PHYSICAL REVIEW B, 1994, 50 (11): : 7304 - 7310
  • [2] Optical conductivity in a 2D model of the pseudogap state
    Sadovskii, MV
    Strigina, NA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2002, 95 (03) : 526 - 537
  • [3] Optical conductivity in a 2D model of the pseudogap state
    M. V. Sadovskii
    N. A. Strigina
    Journal of Experimental and Theoretical Physics, 2002, 95 : 526 - 537
  • [4] Theory of the pseudogap formation in 2D attracting fermion systems
    V. M. Loktev
    V. M. Turkowski
    Journal of Experimental and Theoretical Physics, 1998, 87 : 329 - 336
  • [5] Theory of the pseudogap formation in 2D attracting fermion systems
    Loktev, VM
    Turkowski, VM
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 87 (02) : 329 - 336
  • [6] Anderson–Bernoulli Localization at Large Disorder on the 2D Lattice
    Linjun Li
    Communications in Mathematical Physics, 2022, 393 : 151 - 214
  • [7] Moments of 2D parabolic Anderson model
    Gu, Yu
    Xu, Weijun
    ASYMPTOTIC ANALYSIS, 2018, 108 (03) : 151 - 161
  • [8] The 2D Hubbard model and the pseudogap: a COM(SCBA) study
    Avella, Adolfo
    Mancini, Ferdinando
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (25)
  • [9] Anderson-Bernoulli Localization at Large Disorder on the 2D Lattice
    Li, Linjun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (01) : 151 - 214
  • [10] Chaos expansion of 2D parabolic Anderson model
    Gu, Yu
    Huang, Jingyu
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23