DESCENDING CHAIN CONDITION RELATIVE TO A TORSION THEORY

被引:43
作者
MILLER, RW [1 ]
TEPLY, ML [1 ]
机构
[1] UNIV FLORIDA,GAINESVILLE,FL 32611
关键词
D O I
10.2140/pjm.1979.83.207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known theorem of Hopkins and Levitzki states that any left artinian ring with identity element is left noetherian. The main theorem of this paper generalizes this to the situation of a hereditary torsion theory with associated idempotent kernel functor σ. It is shown that if a ring R with identity element has the descending chain condition on σ-closed left ideals, then R has the ascending chain condition on σ-closed left ideals. © 1979, University of California, Berkeley. All Rights Reserved.
引用
收藏
页码:207 / 219
页数:13
相关论文
共 14 条
[1]   DIRECT-SUM REPRESENTATIONS OF INJECTIVE MODULES [J].
FAITH, C ;
WALKER, EA .
JOURNAL OF ALGEBRA, 1967, 5 (02) :203-&
[2]   MODULES SATISFYING BOTH CHAIN CONDITIONS WITH RESPECT TO A TORSION THEORY [J].
GOLAN, JS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :103-108
[3]  
GOLAN JS, 1975, PURE APPLIED MATH, P30
[4]   RINGS AND MODULES OF QUOTIENTS [J].
GOLDMAN, O .
JOURNAL OF ALGEBRA, 1969, 13 (01) :10-&
[5]  
GOLDMAN O, 1965, J ALGEBRA, V35, P308
[6]   Rings with minimal condition for left ideals [J].
Hopkins, C .
ANNALS OF MATHEMATICS, 1939, 40 :712-730
[7]  
Levitzki J., 1939, COMPOS MATH, V7, P214
[8]  
MANOCHA J, 1973, THESIS U WISCONSIN
[9]  
MILLER RC, UNPUBLISHED
[10]   A GENERALIZATION OF QUASI-FROBENIUS RINGS [J].
OSOFSKY, BL .
JOURNAL OF ALGEBRA, 1966, 4 (03) :373-&