A PROOF OF THE STRUCTURE OF THE MINIMUM-TIME CONTROL LAW OF ROBOTIC MANIPULATORS USING A HAMILTONIAN-FORMULATION

被引:40
作者
CHEN, Y
DESROCHERS, AA
机构
[1] RENSSELAER POLYTECH INST, DEPT ELECT COMP & SYST ENGN, TROY, NY 12180 USA
[2] RENSSELAER POLYTECH INST, CTR INTELLIGENT ROBOT SYST SPACE EXPLORAT, TROY, NY 12180 USA
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 1990年 / 6卷 / 03期
关键词
D O I
10.1109/70.56659
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Hamiltonian Canonical formulation, which yields a new and very straightforward proof of the structure of the minimum-time control (MTC) law for m-link robotic manipulators is used. It is shown that the structure of the MTC law requires that at least one of the actuators is always in saturation. In addition, a numerical algorithm is presented. The algorithm converts the original problem, possibly a partially singular one, into a totally nonsingular optimal control problem by introducing a perturbed energy term in the performance index. It is shown that the solution to the perturbed problem converges to that of the MTC problem in the sense of the performance index as the perturbation parameter approaches zero. The control algorithm is then used in a simulation to verify the MTC law structure. © 1990 IEEE
引用
收藏
页码:388 / 393
页数:6
相关论文
共 23 条
[1]   ON THE EXISTENCE OF TIME-OPTIMAL CONTROL OF MECHANICAL MANIPULATORS [J].
AILON, A ;
LANGHOLZ, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1985, 46 (01) :1-21
[2]  
[Anonymous], 1978, MATH COMPUT, DOI DOI 10.2307/2006361
[3]  
ATHANS M, 1966, OPTIMAL CONTROL
[4]  
Bell D. J., 1975, SINGULAR OPTIMAL CON
[5]   TIME-OPTIMAL CONTROL OF ROBOTIC MANIPULATORS ALONG SPECIFIED PATHS [J].
BOBROW, JE ;
DUBOWSKY, S ;
GIBSON, JS .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 1985, 4 (03) :3-17
[6]  
CHEN YB, 1987, RAL90 RENSS POL I RO
[7]   TIME-OPTIMAL MOTIONS OF ROBOTS IN ASSEMBLY TASKS [J].
GEERING, HP ;
GUZZELLA, L ;
HEPNER, SAR ;
ONDER, CH .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (06) :512-518
[8]  
HERMES H, 1970, FUNCTIONAL ANAL TIME
[9]   COMPUTATION OF OPTIMAL SINGULAR CONTROLS [J].
JACOBSON, DH ;
GERSHWIN, SB ;
LELE, MM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1970, AC15 (01) :67-+
[10]  
KAHN ME, 1971, T ASME SEP, P164