Exact Abelian and Non-Abelian Geometric Phases

被引:0
作者
Soo, Chopin [1 ]
Lin, Huei-Chen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2014年 / 8卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of Hopf fibrations S2N+1 / S-1 = C-PN and S4K+3 / S-3 = HPK allows us to treat the Hilbert space of generic finite-dimensional quantum systems as the total bundle space with respectively U(1) and SU(2) fibers and complex and quaternionic projective spaces as base manifolds. This alternative method of studying quantum states and their evolution reveals the intimate connection between generic quantum mechanical systems and geometrical objects. The exact Abelian and non-Abelian geometric phases, and more generally the geometrical factors for open paths, and their precise correspondence with geometric Kahler and hyper-Kahler connections will be discussed. Explicit physical examples are used to verify and exemplify the formalism.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [41] Abelian and Non-Abelian Triangle Mysteries
    Mitchell, Lon
    Jones, Michael A.
    Shelton, Brittany
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (08) : 808 - 813
  • [42] HOW NON-ABELIAN IS NON-ABELIAN GAUGE-THEORY
    CRABB, MC
    SUTHERLAND, WA
    QUARTERLY JOURNAL OF MATHEMATICS, 1995, 46 (183) : 279 - 290
  • [43] Symmetry-protected non-Abelian geometric phases in optical waveguides with nonorthogonal modes
    Pinske, Julien
    Scheel, Stefan
    PHYSICAL REVIEW A, 2022, 105 (01)
  • [44] Non-Abelian Geometric Phases in Photonics and their Optimal Design Strategy Based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [45] EXACT RESULTS IN THE THEORY OF NON-ABELIAN MAGNETIC MONOPOLES
    ROSSI, P
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 86 (06): : 317 - 362
  • [47] Exact chiral spin liquid with non-Abelian anyons
    Yao, Hong
    Kivelson, Steven A.
    PHYSICAL REVIEW LETTERS, 2007, 99 (24)
  • [48] Detecting non-Abelian geometric phase in circuit QED
    Peng, Man-Lv
    Zhou, Jian
    Xue, Zheng-Yuan
    QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2739 - 2747
  • [49] Non-Abelian geometric quantum memory with an atomic ensemble
    Li, Y
    Zhang, P
    Zanardi, P
    Sun, CP
    PHYSICAL REVIEW A, 2004, 70 (03): : 032330 - 1
  • [50] Noncyclic geometric phase and its non-Abelian generalization
    Mostafazadeh, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46): : 8157 - 8171