Exact Abelian and Non-Abelian Geometric Phases

被引:0
作者
Soo, Chopin [1 ]
Lin, Huei-Chen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2014年 / 8卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of Hopf fibrations S2N+1 / S-1 = C-PN and S4K+3 / S-3 = HPK allows us to treat the Hilbert space of generic finite-dimensional quantum systems as the total bundle space with respectively U(1) and SU(2) fibers and complex and quaternionic projective spaces as base manifolds. This alternative method of studying quantum states and their evolution reveals the intimate connection between generic quantum mechanical systems and geometrical objects. The exact Abelian and non-Abelian geometric phases, and more generally the geometrical factors for open paths, and their precise correspondence with geometric Kahler and hyper-Kahler connections will be discussed. Explicit physical examples are used to verify and exemplify the formalism.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [31] Exact oscillations and chaos on a non-Abelian coil
    Canfora, Fabrizio
    Grandi, Nicolas
    Oyarzo, Marcelo
    Oliva, Julio
    NUCLEAR PHYSICS B, 2024, 1004
  • [32] Long exact sequence in non-abelian cohomology
    Cegarba, A.M.
    Garzon, A.R.
    Lecture Notes in Mathematics, 1991, 1488
  • [33] EXACT SEQUENCE OF HOMOLOGY IN NON-ABELIAN CATEGORY
    GRILLET, PA
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (12): : 604 - &
  • [34] Non-Abelian defects in fracton phases of matter
    You, Yizhi
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [35] SYMPLECTIC STRUCTURE FOR THE NON-ABELIAN GEOMETRIC PHASE
    CHRUSCINSKI, D
    PHYSICS LETTERS A, 1994, 186 (1-2) : 1 - 4
  • [36] NON-ADIABATIC NON-ABELIAN GEOMETRIC PHASE
    ANANDAN, J
    PHYSICS LETTERS A, 1988, 133 (4-5) : 171 - 175
  • [37] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [38] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [39] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [40] Abelian representation for the non-Abelian Wilson loop and the non-Abelian Stokes theorem on the lattice
    Zubkov, MA
    PHYSICAL REVIEW D, 2003, 68 (05)