Exact Abelian and Non-Abelian Geometric Phases

被引:0
|
作者
Soo, Chopin [1 ]
Lin, Huei-Chen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2014年 / 8卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of Hopf fibrations S2N+1 / S-1 = C-PN and S4K+3 / S-3 = HPK allows us to treat the Hilbert space of generic finite-dimensional quantum systems as the total bundle space with respectively U(1) and SU(2) fibers and complex and quaternionic projective spaces as base manifolds. This alternative method of studying quantum states and their evolution reveals the intimate connection between generic quantum mechanical systems and geometrical objects. The exact Abelian and non-Abelian geometric phases, and more generally the geometrical factors for open paths, and their precise correspondence with geometric Kahler and hyper-Kahler connections will be discussed. Explicit physical examples are used to verify and exemplify the formalism.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [21] Optimal Design Strategy of Non-Abelian Geometric Phases based on Quantum Metric
    Kremer, Mark
    Teuber, Lucas
    Szameit, Alexander
    Scheel, Stefan
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [22] Comment on "Detecting non-Abelian geometric phases with three-level Λ systems"
    Ericsson, Marie
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [23] Non-Abelian geometric phases and conductance of spin-3/2 holes
    Arovas, DP
    Lyanda-Geller, Y
    PHYSICAL REVIEW B, 1998, 57 (19): : 12302 - 12305
  • [24] Exact non-abelian target space duality
    Hewson, S
    Perry, M
    PHYSICS LETTERS B, 1997, 391 (3-4) : 316 - 323
  • [25] Non-Abelian Fields in Exact String Solutions
    Iofa, M. Z.
    Pando Zayas, L. A.
    Modern Physics Letter A, 12 (13):
  • [26] Exploring Non-Abelian Geometric Phases in Spin-1 Ultracold Atoms
    Bharath, H. M.
    Boguslawski, Matthew
    Barrios, Maryrose
    Xin, Lin
    Chapman, Michael S.
    PHYSICAL REVIEW LETTERS, 2019, 123 (17)
  • [27] Geometric phases and quantum entanglement as building blocks for non-Abelian quasiparticle statistics
    Stern, A
    von Oppen, F
    Mariani, E
    PHYSICAL REVIEW B, 2004, 70 (20): : 205338 - 1
  • [28] Non-Abelian fields in exact string solutions
    Iofa, MZ
    Zayas, LAP
    MODERN PHYSICS LETTERS A, 1997, 12 (13) : 913 - 924
  • [29] A LONG EXACT SEQUENCE IN NON-ABELIAN COHOMOLOGY
    CEGARRA, AM
    GARZON, AR
    LECTURE NOTES IN MATHEMATICS, 1991, 1488 : 79 - 94
  • [30] Exact oscillations and chaos on a non-Abelian coil
    Canfora, Fabrizio
    Grandi, Nicolas
    Oyarzo, Marcelo
    Oliva, Julio
    NUCLEAR PHYSICS B, 2024, 1004