Exact Abelian and Non-Abelian Geometric Phases

被引:0
|
作者
Soo, Chopin [1 ]
Lin, Huei-Chen [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Phys, Tainan 701, Taiwan
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2014年 / 8卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of Hopf fibrations S2N+1 / S-1 = C-PN and S4K+3 / S-3 = HPK allows us to treat the Hilbert space of generic finite-dimensional quantum systems as the total bundle space with respectively U(1) and SU(2) fibers and complex and quaternionic projective spaces as base manifolds. This alternative method of studying quantum states and their evolution reveals the intimate connection between generic quantum mechanical systems and geometrical objects. The exact Abelian and non-Abelian geometric phases, and more generally the geometrical factors for open paths, and their precise correspondence with geometric Kahler and hyper-Kahler connections will be discussed. Explicit physical examples are used to verify and exemplify the formalism.
引用
收藏
页码:85 / 101
页数:17
相关论文
共 50 条
  • [1] Abelian and non-Abelian geometric phases in adiabatic open quantum systems
    Sarandy, M. S.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [2] Detecting non-Abelian geometric phases with superconducting nanocircuits
    Feng, Zhi-Bo
    Zhang, Yuan-Min
    Wang, Guo-Zhi
    Han, Hongpei
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (10): : 1859 - 1863
  • [3] Non-Abelian geometric phases in periodically driven systems
    Novicenko, Viktor
    Juzeliunas, Gediminas
    PHYSICAL REVIEW A, 2019, 100 (01)
  • [4] Abelian and non-Abelian quantum geometric tensor
    Ma, Yu-Quan
    Chen, Shu
    Fan, Heng
    Liu, Wu-Ming
    PHYSICAL REVIEW B, 2010, 81 (24)
  • [5] Exact non-Abelian supertubes
    Nemoto, Ryo
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [6] Non-Abelian Geometric Dephasing
    Snizhko, Kyrylo
    Egger, Reinhold
    Gefen, Yuval
    PHYSICAL REVIEW LETTERS, 2019, 123 (06)
  • [7] Particle-number threshold for non-Abelian geometric phases
    Pinske, Julien
    Burgtorf, Vincent
    Scheel, Stefan
    PHYSICAL REVIEW A, 2023, 107 (06)
  • [8] Non-Abelian generalization of off-diagonal geometric phases
    Kult, D.
    Aberg, J.
    Sjoqvist, E.
    EPL, 2007, 78 (06)
  • [9] Generation of non-Abelian geometric phases in degenerate atomic transitions
    Simeonov, Lachezar S.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2017, 96 (03)
  • [10] Non-Abelian geometric phases in a system of coupled quantum bits
    Mousolou, Vahid Azimi
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2014, 89 (02):